MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Optics and photonics : an introduction / F. Graham Smith and Terry A. King.

By: Graham-Smith, Francis, Sir, 1923-.
Contributor(s): King, Terry A.
Material type: materialTypeLabelBookPublisher: Chichester : Wiley, 2000Description: xiv, 439 p. : ill. ; 25 cm + pbk.ISBN: 0471489247 (v) (hbk); 0471489255 (m) (pbk).Subject(s): Optics | PhotonicsDDC classification: 535
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 535 (Browse shelf(Opens below)) 1 Checked out 06/10/2023 00084186
Total holds: 0

Enhanced descriptions from Syndetics:

This new book presents an introduction to the essential elements of optics and photonics. Optics as a subject, has evolved dramatically in recent years, and is now an essential part of many science and engineering disciplines as well as being commonly found throughout everyday life.

Includes bibliographical references and index.

Table of contents provided by Syndetics

  • Authors' preface (p. xiii)
  • Physical constants and conversion factors (p. xv)
  • Acknowledgements (p. xvi)
  • 1 Light As Waves, Rays and Photons (p. 1)
  • 1.1 The Nature of Light (p. 1)
  • 1.2 Waves and Rays (p. 4)
  • 1.3 Total Internal Reflection (p. 6)
  • 1.4 The Light Wave (p. 7)
  • 1.5 Electromagnetic Waves (p. 10)
  • 1.6 The Electromagnetic Spectrum (p. 11)
  • 1.7 Waves and Photons (p. 12)
  • 1.8 Further Reading (p. 14)
  • Numerical Examples 1 (p. 15)
  • Problems 1 (p. 15)
  • 2 Geometric Optics (p. 19)
  • 2.1 The Thin Prism (p. 19)
  • 2.2 The Lens as an Assembly of Prisms (p. 22)
  • 2.3 Refraction at a Spherical Surface (p. 23)
  • 2.4 Two Surfaces: the Simple Lens (p. 25)
  • 2.5 Imaging in Spherical Mirrors (p. 26)
  • 2.6 General properties of Imaging Systems (p. 27)
  • 2.7 Separated Thin Lenses in Air (p. 29)
  • 2.8 Perfect Imaging (p. 31)
  • 2.9 Perfect Imaging of Surfaces (p. 32)
  • 2.10 Ray and Wave Aberrations (p. 33)
  • 2.11 Wave Aberration On Axis--Spherical Aberration (p. 34)
  • 2.12 Off-Axis Aberrations (p. 37)
  • 2.13 The Influence of Aperture Stops (p. 39)
  • 2.14 The Correction of Chromatic Aberration (p. 40)
  • 2.15 Achromatism in Separated Lens Systems (p. 42)
  • 2.16 Adaptive Optics (p. 42)
  • 2.17 Further Reading (p. 43)
  • Numerical Examples 2 (p. 43)
  • Problems 2 (p. 44)
  • 3 Optical Instruments (p. 47)
  • 3.1 The Human Eye (p. 47)
  • 3.2 The Simple Lens Magnifier (p. 50)
  • 3.3 The Telescope (p. 51)
  • 3.4 Advantages of the Various Types of Telescope (p. 53)
  • 3.5 Binoculars (p. 55)
  • 3.6 The Compound Microscope (p. 58)
  • 3.7 The Confocal Scanning Microscope (p. 59)
  • 3.8 The Camera (p. 61)
  • 3.9 Illumination in Optical Instruments (p. 64)
  • 3.10 Further Reading (p. 66)
  • Numerical Examples 3 (p. 66)
  • Problems 3 (p. 66)
  • 4 Periodic and Non-Periodic Waves (p. 69)
  • 4.1 Simple Harmonic Waves (p. 70)
  • 4.2 Positive and Negative Frequencies (p. 72)
  • 4.3 Standing Waves (p. 74)
  • 4.4 Beats Between Oscillations (p. 76)
  • 4.5 Similarities Between Beats and Standing Wave Patterns (p. 77)
  • 4.6 Standing Waves at a Reflector (p. 78)
  • 4.7 The Doppler Effect (p. 80)
  • 4.8 Doppler Radar (p. 81)
  • 4.9 Astronomical Aberration (p. 82)
  • 4.10 Fourier Series (p. 83)
  • 4.11 Modulated Waves: Fourier Transforms (p. 86)
  • 4.12 Modulation by a Non-periodic Function (p. 87)
  • 4.13 Convolution (p. 89)
  • 4.14 Delta and Grating Functions (p. 90)
  • 4.15 Autocorrelation and the Power Spectrum (p. 91)
  • 4.16 Wave Groups (p. 91)
  • 4.17 An Angular Spread of Plane Waves (p. 93)
  • 4.18 Further Reading (p. 94)
  • Numerical Example 4 (p. 94)
  • Problems 4 (p. 94)
  • 5 Electromagnetic Waves (p. 97)
  • 5.1 Maxwell's Equations (p. 98)
  • 5.2 Transverse Waves (p. 100)
  • 5.3 Energy Flow (p. 102)
  • 5.4 Reflection and Transmission: Fresnel's Equations (p. 103)
  • 5.5 Total Internal Reflection: Evanescent Waves (p. 107)
  • 5.6 Photon Momentum and Radiation Pressure (p. 109)
  • 5.7 Black-body Radiation (p. 110)
  • 5.8 Further Reading (p. 113)
  • Numerical Examples 5 (p. 114)
  • Problems 5 (p. 114)
  • 6 Polarization of Light (p. 115)
  • 6.1 Polarization of Transverse Waves (p. 116)
  • 6.2 Analysis of Elliptically Polarized Waves (p. 119)
  • 6.3 Polarizers (p. 119)
  • 6.4 Birefringent Polarizers (p. 122)
  • 6.5 Quarter- and Half-wave Plates (p. 124)
  • 6.6 Optical Activity (p. 125)
  • 6.7 Induced Birefringence (p. 126)
  • 6.8 Formal Descriptions of Polarization (p. 130)
  • 6.9 Further Reading (p. 131)
  • Numerical Example 6 (p. 132)
  • Problems 6 (p. 132)
  • 7 Interference and Fraunhofer Diffraction (p. 133)
  • 7.1 Interference (p. 134)
  • 7.2 Young's Experiment (p. 136)
  • 7.3 Diffraction at a Single Slit (p. 139)
  • 7.4 The General Aperture (p. 142)
  • 7.5 Rectangular and Circular Apertures (p. 144)
  • 7.6 The Field at the Edge of an Aperture (p. 148)
  • 7.7 Further Reading (p. 149)
  • Numerical Examples 7 (p. 149)
  • Problems 7 (p. 149)
  • 8 Fresnel Diffraction (p. 151)
  • 8.1 Fraunhofer and Fresnel Diffraction (p. 151)
  • 8.2 Shadow Edges - Fresnel Diffraction at a Straight Edge (p. 153)
  • 8.3 Diffraction of Cylindrical Wavefronts (p. 157)
  • 8.4 Fresnel Diffraction by Slits and Strip Obstacles (p. 159)
  • 8.5 Spherical Waves and Circular Apertures: Half-period Zones (p. 162)
  • 8.6 Fresnel-Kirchhoff Diffraction Theory (p. 166)
  • 8.7 Babinet's Principle (p. 167)
  • 8.8 Further Reading (p. 168)
  • Numerical Examples 8 (p. 168)
  • Problems 8 (p. 168)
  • 9 Interference by Division of Amplitude (p. 169)
  • 9.1 Newton's Rings (p. 169)
  • 9.2 Interference Effects with a Plane-parallel Plate (p. 173)
  • 9.3 Thin Films (p. 175)
  • 9.4 Michelson's Spectral Interferometer (p. 177)
  • 9.5 Multiple Beam Interference (p. 179)
  • 9.6 The Fabry-Perot Interferometer (p. 182)
  • 9.7 Interference Filters (p. 183)
  • 9.8 Further Reading (p. 184)
  • Numerical Examples 9 (p. 184)
  • Problems 9 (p. 184)
  • 10 The Diffraction Grating and Its Applications (p. 187)
  • 10.1 The Diffraction Grating (p. 187)
  • 10.2 Diffraction Pattern of the Grating (p. 191)
  • 10.3 The Effect of Slit Width and Shape (p. 192)
  • 10.4 Fourier Transforms in Grating Theory (p. 193)
  • 10.5 Missing Orders and Blazed Gratings (p. 195)
  • 10.6 Making Gratings (p. 196)
  • 10.7 Radio Antenna Arrays (p. 198)
  • 10.8 X-ray Diffraction with a Ruled Grating (p. 200)
  • 10.9 Diffraction by a Crystal Lattice (p. 202)
  • 10.10 Further Reading (p. 204)
  • Numerical Examples 10 (p. 204)
  • Problems 10 (p. 205)
  • 11 Interferometry: Length and Angle (p. 207)
  • 11.1 The Rayleigh Refractometer (p. 208)
  • 11.2 Wedge Fringes and End Gauges (p. 208)
  • 11.3 The Twyman and Green Interferometer (p. 209)
  • 11.4 The Standard of Length (p. 211)
  • 11.5 The Michelson-Morley Experiment (p. 213)
  • 11.6 The Ring Interferometer (p. 214)
  • 11.7 Optical Fibres in Interferometers (p. 216)
  • 11.8 Detecting Gravitational Waves by Interferometry (p. 218)
  • 11.9 Double Source Interferometers (p. 218)
  • 11.10 The Effect of Slit Width (p. 220)
  • 11.11 Source Size and Coherence (p. 221)
  • 11.12 Michelson's Stellar Interferometer (p. 223)
  • 11.13 Very Long Baseline Interferometry (p. 226)
  • 11.14 The Intensity Interferometer (p. 227)
  • 11.15 Further Reading (p. 229)
  • Numerical Examples 11 (p. 229)
  • Problems 11 (p. 230)
  • 12 Prism and Grating Spectrometers (p. 233)
  • 12.1 The Prism Spectrometer (p. 233)
  • 12.2 The Grating Spectrometer (p. 236)
  • 12.3 Resolving Power in Wavelength (p. 238)
  • 12.4 Resolving Power: Prism Spectrometers (p. 239)
  • 12.5 Resolving Power: Grating Spectrometers (p. 241)
  • 12.6 Concave Gratings (p. 243)
  • 12.7 Blazed, Echellette, Echelle and Echelon Gratings (p. 244)
  • 12.8 Efficiency of Spectrographs (p. 247)
  • Numerical Examples 12 (p. 248)
  • Problems 12 (p. 249)
  • 13 High Resolution Spectrometry (p. 251)
  • 13.1 The Shape and Broadening of Spectral Lines (p. 251)
  • 13.2 Natural Linewidths (p. 252)
  • 13.3 Pressure Broadening (p. 253)
  • 13.4 Doppler Broadening (p. 254)
  • 13.5 Twin-beam Spectrometry: Fourier Transform Spectrometry (p. 256)
  • 13.6 Practical Fourier Spectrometry (p. 259)
  • 13.7 Intensity, or Photon correlation Spectroscopy (p. 260)
  • 13.8 Scattered Laser Light (p. 263)
  • 13.9 Further Reading (p. 263)
  • Numerical Examples 13 (p. 264)
  • 14 Coherence and Correlation (p. 265)
  • 14.1 Temporal and Spectral Coherence (p. 265)
  • 14.2 Correlation as a Measure of Coherence (p. 267)
  • 14.3 Autocorrelation and Coherence (p. 269)
  • 14.4 Two-dimensional Angular Resolution (p. 271)
  • 14.5 The Intensity Interferometer (p. 273)
  • 14.6 Spatial Filtering (p. 275)
  • 14.7 Further Reading (p. 278)
  • Numerical Examples 14 (p. 278)
  • Problems 14 (p. 278)
  • 15 Lasers (p. 279)
  • 15.1 Stimulated Emission (p. 279)
  • 15.2 Pumping: the Energy Source (p. 281)
  • 15.3 Absorption and Emission of Radiation (p. 283)
  • 15.4 Laser Gain (p. 286)
  • 15.5 Population Inversion (p. 289)
  • 15.6 Threshold Gain Coefficient (p. 289)
  • 15.7 Laser Resonators (p. 291)
  • 15.8 Beam Irradiance and Divergence (p. 293)
  • 15.9 Examples of Important Laser Systems (p. 295)
  • 15.10 Further Reading (p. 297)
  • Numerical Examples 15 (p. 297)
  • Problems 15 (p. 298)
  • 16 Semiconductors and Semiconductor Lasers (p. 301)
  • 16.1 Semiconductors (p. 301)
  • 16.2 Semiconductor Diodes (p. 304)
  • 16.3 Light-emitting Diodes and Semiconductor Lasers (p. 306)
  • 16.4 Semiconductor Laser Cavities (p. 309)
  • 16.5 Wavelengths and Tuning of Semiconductor Lasers (p. 311)
  • 16.6 Electroluminescence in Organic Semiconductors (p. 312)
  • 16.7 Further Reading (p. 313)
  • 17 Laser Light (p. 315)
  • 17.1 Laser Linewidth (p. 315)
  • 17.2 Spatial Coherence (p. 319)
  • 17.3 Temporal Coherence and Coherence Length (p. 322)
  • 17.4 Laser Pulse Duration (p. 323)
  • 17.5 Brightness (p. 327)
  • 17.6 Focusing Laser Light (p. 327)
  • 17.7 Nonlinear Optics (p. 328)
  • 17.8 Further Reading (p. 329)
  • Numerical Examples 17 (p. 330)
  • Problems 17 (p. 330)
  • 18 Fibre Optics (p. 331)
  • 18.1 The Light Pipe (p. 332)
  • 18.2 Guided Waves (p. 333)
  • 18.3 The Slab Dielectric Guide (p. 336)
  • 18.4 Evanescent Fields in Fibre Optics (p. 338)
  • 18.5 Cylindrical Fibres and Waveguides (p. 340)
  • 18.6 Numerical Aperture (p. 342)
  • 18.7 Materials for Optical Fibres (p. 343)
  • 18.8 Dispersion in Optical Fibres (p. 345)
  • 18.9 Dispersion Compensation (p. 349)
  • 18.10 Hole-array Light Guide (p. 352)
  • 18.11 Fabrication of Optical Fibres (p. 352)
  • 18.12 Further Reading (p. 354)
  • Numerical Examples 18 (p. 354)
  • Problems 18 (p. 354)
  • 19 Holography (p. 357)
  • 19.1 Reconstructing a Plane Wave (p. 358)
  • 19.2 Holographic Recording (p. 359)
  • 19.3 Gabor's Original Method (p. 361)
  • 19.4 Aspect Effects (p. 362)
  • 19.5 Holographic Interferometry (p. 363)
  • 19.6 Phase Holograms (p. 364)
  • 19.7 Holography in Colour (p. 365)
  • 19.8 Holography of Moving Objects (p. 366)
  • 19.9 Holographic Optical Elements (p. 366)
  • 19.10 Holographic Data Storage (p. 367)
  • 19.11 Further Reading (p. 367)
  • 20 Radiation, Scattering and Refraction (p. 369)
  • 20.1 Radiation Processes (p. 369)
  • 20.2 The Hertzian Dipole (p. 370)
  • 20.3 Free-Free Radiation (p. 372)
  • 20.4 Synchrotron Radiation (p. 373)
  • 20.5 Cerenkov Radiation (p. 374)
  • 20.6 Rayleigh Scattering (p. 375)
  • 20.7 Raman Scattering (p. 376)
  • 20.8 Thomson and Compton Scattering by Electrons (p. 377)
  • 20.9 Polarization in Dielectrics (p. 377)
  • 20.10 Free Electrons (p. 379)
  • 20.11 Resonant Atoms in Gases (p. 380)
  • 20.12 Anisotropic Refraction (p. 381)
  • 20.13 Further Reading (p. 382)
  • 21 The Detection of Light (p. 383)
  • 21.1 Photoemissive Detectors (p. 383)
  • 21.2 Semiconductor Detectors (p. 386)
  • 21.3 Semiconductor Junction Photodiodes (p. 388)
  • 21.4 Imaging Detectors (p. 391)
  • 21.5 Noise in Photodetectors (p. 392)
  • 21.6 Image Intensifiers (p. 394)
  • 21.7 Photography (p. 397)
  • 21.8 Thermal Detectors (p. 398)
  • 21.9 Further Reading (p. 399)
  • Numerical Examples 21 (p. 399)
  • 22 Optics and Photonics in Nature (p. 401)
  • 22.1 Light and Colour in the Open Air (p. 401)
  • 22.2 The Development of Eyes (p. 402)
  • 22.3 Corneal Focusing (p. 403)
  • 22.4 Compound Eyes (p. 405)
  • 22.5 Reflection Optics (p. 406)
  • 22.6 Thin Film Reflectors in Nature (p. 407)
  • 22.7 Biological Light Detectors (p. 408)
  • 22.8 Photosynthesis (p. 410)
  • 22.9 Further Reading (p. 411)
  • Appendix Radiometry and Photometry (p. 413)
  • Solutions to Numerical Examples (p. 417)
  • Solutions to Problems (p. 423)
  • Index (p. 435)

Powered by Koha