MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Radio frequency circuit design / W. Alan Davis, Krishna Agarwal.

By: Davis, W. Alan.
Contributor(s): Agarwal, Krishna K. (Krishna Kumar).
Material type: materialTypeLabelBookSeries: Wiley series in microwave and optical engineering.Publisher: New York ; Chichester : John Wiley, 2001Description: xiii, 326 p. : ill. ; 24 cm. + hbk.ISBN: 0471350524.Subject(s): Radio circuits -- Design and constructionDDC classification: 621.38132
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 621.38132 (Browse shelf(Opens below)) 1 Available 00080306
Total holds: 0

Enhanced descriptions from Syndetics:

A much-needed, up-to-date guide to the rapidly growing area of RF circuit design, this book walks readers through a whole range of new and improved techniques for the analysis and design of receiver and transmitter circuits, illustrating them through examples from modern-day communications systems. The application of MMIC to RF design is also discussed.

"A Wiley-Interscience publication.".

Includes bibliographical references and index.

Table of contents provided by Syndetics

  • Preface (p. xiii)
  • 1 Communication Channel (p. 1)
  • 1.1 Basic Transmitter-Receiver Configuration (p. 1)
  • 1.2 Information and Capacity (p. 3)
  • 1.3 Dependent States (p. 6)
  • Problems (p. 8)
  • References (p. 8)
  • 2 Resistors, Capacitors, and Inductors (p. 9)
  • 2.1 Introduction (p. 9)
  • 2.2 Resistors (p. 9)
  • 2.3 Capacitors (p. 14)
  • 2.4 Inductors (p. 20)
  • Problems (p. 31)
  • References (p. 31)
  • 3 Impedance Matching (p. 33)
  • 3.1 Introduction (p. 33)
  • 3.2 The Q Factor (p. 33)
  • 3.3 Resonance and Bandwidth (p. 34)
  • 3.4 Unloaded Q (p. 36)
  • 3.5 L Circuit Impedance Matching (p. 36)
  • 3.6 [pi] Transformation Circuit (p. 39)
  • 3.7 T Transformation Circuit (p. 41)
  • 3.8 Tapped Capacitor Transformer (p. 42)
  • 3.9 Parallel Double-Tuned Transformer (p. 45)
  • Problems (p. 49)
  • References (p. 50)
  • 4 Multiport Circuit Parameters and Transmission Lines (p. 51)
  • 4.1 Voltage-Current Two-Port Parameters (p. 51)
  • 4.2 ABCD Parameters (p. 53)
  • 4.3 Image Impedance (p. 54)
  • 4.4 The Telegrapher's Equations (p. 59)
  • 4.5 The Transmission Line Equation (p. 61)
  • 4.6 The Smith Chart (p. 63)
  • 4.7 Commonly Used Transmission Lines (p. 65)
  • 4.8 Scattering Parameters (p. 74)
  • 4.9 The Indefinite Admittance Matrix (p. 78)
  • 4.10 The Indefinite Scattering Matrix (p. 80)
  • Problems (p. 82)
  • References (p. 82)
  • 5 Filter Design and Approximation (p. 84)
  • 5.1 Introduction (p. 84)
  • 5.2 Ideal and Approximate Filter Types (p. 84)
  • 5.3 Transfer Function and Basic Filter Concepts (p. 88)
  • 5.4 Ladder Network Filters (p. 89)
  • 5.5 The Elliptic Filter (p. 94)
  • 5.6 Matching between Unequal Resistances (p. 95)
  • Problems (p. 104)
  • References (p. 104)
  • 6 Transmission Line Transformers (p. 105)
  • 6.1 Introduction (p. 105)
  • 6.2 Ideal Transmission Line Transformers (p. 106)
  • 6.3 Transmission Line Transformer Synthesis (p. 110)
  • 6.4 Electrically Long Transmission Line Transformers (p. 111)
  • 6.5 Baluns (p. 115)
  • 6.6 Dividers And Combiners (p. 117)
  • Problems (p. 121)
  • References (p. 121)
  • 7 Class A Amplifiers (p. 122)
  • 7.1 Introduction (p. 122)
  • 7.2 Definition of Gain [2] (p. 122)
  • 7.3 Transducer Power Gain of a Two-Port (p. 123)
  • 7.4 Power Gain Using S Parameters (p. 124)
  • 7.5 Simultaneous Match for Maximum Power Gain (p. 127)
  • 7.6 Stability (p. 129)
  • 7.7 Class A Power Amplifiers (p. 139)
  • 7.8 Power Combining of Power Amplifiers (p. 141)
  • Problems (p. 142)
  • References (p. 143)
  • 8 Noise (p. 144)
  • 8.1 Sources of Noise (p. 144)
  • 8.2 Thermal Noise (p. 145)
  • 8.3 Shot Noise (p. 148)
  • 8.4 Noise Circuit Analysis (p. 149)
  • 8.5 Amplifier Noise Characterization (p. 151)
  • 8.6 Noise Measurement (p. 152)
  • 8.7 Noisy Two-Ports (p. 153)
  • 8.8 Two-Port Noise Figure Derivation (p. 154)
  • 8.9 The Fukui Noise Model for Transistors (p. 158)
  • 8.10 Properties of Cascaded Amplifiers (p. 161)
  • 8.11 Amplifier Design for Optimum Gain and Noise (p. 164)
  • Problems (p. 166)
  • References (p. 166)
  • 9 RF Power Amplifiers (p. 168)
  • 9.1 Transistor Configurations (p. 168)
  • 9.2 The Class B Amplifier (p. 169)
  • 9.3 The Class C Amplifier (p. 178)
  • 9.4 Class C Input Bias Voltage (p. 183)
  • 9.5 The Class D Power Amplifier (p. 184)
  • 9.6 The Class F Power Amplifier (p. 185)
  • 9.7 Feed-Forward Amplifiers (p. 191)
  • Problems (p. 193)
  • References (p. 193)
  • 10 Oscillators and Harmonic Generators (p. 195)
  • 10.1 Oscillator Fundamentals (p. 195)
  • 10.2 Feedback Theory (p. 197)
  • 10.3 Two-Port Oscillators with External Feedback (p. 197)
  • 10.4 Practical Oscillator Example (p. 202)
  • 10.5 Minimum Requirements of the Reflection Coefficient (p. 204)
  • 10.6 Common Gate (Base) Oscillators (p. 206)
  • 10.7 Stability of an Oscillator (p. 210)
  • 10.8 Injection-Locked Oscillators (p. 214)
  • 10.9 Harmonic Generators (p. 216)
  • Problems (p. 221)
  • References (p. 221)
  • 11 RF Mixers (p. 222)
  • 11.1 Nonlinear Device Characteristics (p. 222)
  • 11.2 Figures of Merit for Mixers (p. 226)
  • 11.3 Single-Ended Mixers (p. 227)
  • 11.4 Single-Balanced Mixers (p. 228)
  • 11.5 Double-Balanced Mixers (p. 230)
  • 11.6 Double-Balanced Transistor Mixers (p. 235)
  • 11.7 Spurious Response (p. 240)
  • 11.8 Single-Sideband Noise Figure and Noise Temperature (p. 243)
  • Problems (p. 246)
  • References (p. 246)
  • 12 Phase Lock Loops (p. 247)
  • 12.1 Introduction (p. 247)
  • 12.2 PLL Design Background (p. 247)
  • 12.3 PLL Applications (p. 248)
  • 12.4 PLL Basics (p. 249)
  • 12.5 Loop Design Principles (p. 250)
  • 12.6 PLL Components (p. 251)
  • 12.7 Linear Analysis of the PLL [1] (p. 255)
  • 12.8 Locking a Phase Lock Loop (p. 259)
  • 12.9 Loop Types (p. 261)
  • 12.10 Negative Feedback in a PLL (p. 263)
  • 12.11 PLL Design Equations (p. 264)
  • 12.12 PLL Oscillators (p. 270)
  • 12.13 Phase Detector Types (p. 271)
  • 12.14 Design Examples (p. 274)
  • Problems (p. 277)
  • References (p. 277)
  • 13 Emerging Technology (p. 278)
  • 13.1 Introduction (p. 278)
  • 13.2 Bandwidth (p. 280)
  • 13.3 Spectrum Conservation (p. 280)
  • 13.4 Mobility (p. 281)
  • 13.5 Wireless Internet Access (p. 282)
  • 13.6 Key Technologies (p. 283)
  • References (p. 284)
  • Appendixes
  • A. Example of a Solenoid Design (p. 285)
  • B. Analytical Spiral Inductor Model (p. 286)
  • C. Double-Tuned Matching Circuit Example (p. 290)
  • D. Two-Port Parameter Conversion (p. 292)
  • E. Termination of a Transistor Port with a Load (p. 296)
  • F. Transistor and Amplifier Formulas (p. 300)
  • G. Transformed Freuency Domain Measurements Using Spice (p. 305)
  • H. Single-Tone Intermodulation Distortion Suppression for Double-Balanced Mixers (p. 319)
  • Index (p. 323)

Powered by Koha