MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Sensor technology and devices / edited by Ljubisa Ristic.

Contributor(s): Ristić, Ljubiša.
Material type: materialTypeLabelBookPublisher: Boston : Artech House, 1994Description: xiv, 524 p. : ill. ; 24 cm.ISBN: 0890065322.Subject(s): Interface circuits | Detectors -- Design and construction | SemiconductorsDDC classification: 681.2
Contents:
Sensing the real world -- Modeling and simulation of microsensors and actuators -- Bulk micromaching technology -- Surface micromaching technology -- Silicon direct wafer bonding -- Packaging for sensors -- Magnetic field sensors based on lateral magnetotransistors -- Thermal sensors -- Planar silicon photosensors -- Charge coupled devices -- Sensors for the automotive industry -- Signal processing for micromachined sensors -- Controlled oscillators and their applicability to sensors.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 681.2 (Browse shelf(Opens below)) 1 Available 00013987
General Lending MTU Bishopstown Library Store Item 681.2 (Browse shelf(Opens below)) 1 Available 00070442
Total holds: 0

Enhanced descriptions from Syndetics:

"A results-oriented book. Quality line drawings, lucid photography, and informative graphs are used generously... The theoretical rigor of each chapter amply supports the real-world design examples that follow". -- Sensors Magazine

"One of the few sources to offer such comprehensive coverage". -- IEEE Electrical Insulation

Includes bibliographical references and index.

Sensing the real world -- Modeling and simulation of microsensors and actuators -- Bulk micromaching technology -- Surface micromaching technology -- Silicon direct wafer bonding -- Packaging for sensors -- Magnetic field sensors based on lateral magnetotransistors -- Thermal sensors -- Planar silicon photosensors -- Charge coupled devices -- Sensors for the automotive industry -- Signal processing for micromachined sensors -- Controlled oscillators and their applicability to sensors.

Table of contents provided by Syndetics

  • Preface (p. xiii)
  • Chapter 1 Sensing the Real World
  • 1.1 Introduction (p. 1)
  • 1.2 Sensor Classification (p. 2)
  • 1.3 Sensor Parameters (p. 3)
  • 1.4 A Seamless Sensor System (p. 4)
  • 1.5 Sensor Industry Growth (p. 6)
  • 1.6 Summary (p. 8)
  • References (p. 11)
  • Chapter 2 Modeling and Simulation of Microsensors and Actuators
  • 2.1 Introduction (p. 13)
  • 2.2 Modeling Equations (p. 14)
  • 2.2.1 The Basic Semiconductor Equations (p. 14)
  • 2.2.2 Boundary Conditions (p. 16)
  • 2.2.3 Simplification of the Problem (p. 17)
  • 2.2.4 Combination of Mechanical and Electrical Effects (p. 18)
  • 2.3 Discretization Procedures (p. 20)
  • 2.3.1 Accelerated Nonlinear Procedures (p. 21)
  • 2.3.2 Methods of Solution and Grid Generation (p. 22)
  • 2.3.3 Equation Discretization (p. 26)
  • 2.3.4 Error Checking (p. 29)
  • 2.4 Results and Discussion (p. 30)
  • 2.4.1 Hall Devices (p. 30)
  • 2.4.2 Magnetotransistor (p. 33)
  • 2.4.3 Micromachined Flow Sensor (p. 36)
  • 2.4.4 Dynamic Microstructures (p. 39)
  • 2.5 Summary (p. 43)
  • References (p. 43)
  • Chapter 3 Bulk Micromachining Technology
  • 3.1 Introduction (p. 49)
  • 3.2 Basic Concept of Bulk Micromachining (p. 50)
  • 3.2.1 Silicon as a Mechanical Material (p. 50)
  • 3.2.2 Wet Anisotropic Etching (p. 51)
  • 3.2.3 Anisotropic Etchants (p. 59)
  • 3.2.4 Etch-Stop Mechanisms (p. 69)
  • 3.3 CMOS Technology and Bulk Micromachining (p. 76)
  • 3.3.1 CMOS Processing (p. 76)
  • 3.3.2 Micromechanical Structures in CMOS Processing (p. 77)
  • 3.4 Applications of Bulk Micromachining (p. 82)
  • 3.4.1 Bulk Micromachined Accelerometer (p. 82)
  • 3.4.2 Thermal Infrared Sensor (p. 84)
  • 3.4.3 Inductors in CMOS Technology (p. 86)
  • 3.5 Summary (p. 89)
  • References (p. 90)
  • Chapter 4 Surface Micromachining Technology
  • 4.1 Introduction (p. 95)
  • 4.2 Basic Concept of Surface Micromachining Technology (p. 96)
  • 4.2.1 Layer Stacking (p. 96)
  • 4.2.2 Sealing (p. 98)
  • 4.3 Polysilicon for Surface Micromachining (p. 99)
  • 4.3.1 Deposition of Polysilicon (p. 100)
  • 4.3.2 As-Deposited Film Stress (p. 105)
  • 4.3.3 Annealing of Undoped Films (p. 107)
  • 4.3.4 In-Situ Doping (p. 108)
  • 4.3.5 Ex-Situ Doping (p. 115)
  • 4.3.6 Sacrificial Layers and Sacrificial Etching (p. 118)
  • 4.3.7 Stiction (p. 124)
  • 4.4 Mechanical Characterization of Polysilicon (p. 126)
  • 4.4.1 Test Structures for In-Situ Characterization (p. 126)
  • 4.4.2 Gradient of Residual Stress (p. 130)
  • 4.4.3 Load-Response Characterization (p. 133)
  • 4.5 Application of Surface Micromachining (p. 140)
  • 4.5.1 Surface Micromachined Accelerometer (p. 140)
  • 4.5.2 Electrostatically Driven Resonators (p. 143)
  • 4.5.3 Integration of Surface Micromachined Structures--Processing Issues (p. 144)
  • 4.6 LIGA Process (p. 146)
  • 4.7 Summary (p. 149)
  • References (p. 150)
  • Chapter 5 Silicon Direct Wafer Bonding
  • 5.1 Introduction (p. 157)
  • 5.2 Mechanism of Direct Wafer Bonding (p. 159)
  • 5.2.1 SiO[subscript 2]//SiO[subscript 2] Bonding (p. 160)
  • 5.2.2 Si//Si Bonding (p. 164)
  • 5.3 Processing Considerations (p. 168)
  • 5.3.1 Interface Integrity (p. 168)
  • 5.3.2 Bond Strength (p. 178)
  • 5.3.3 Shaping Bonded Wafers (p. 180)
  • 5.3.4 Microdefects in Bonded Wafers (p. 186)
  • 5.4 Application of Direct Wafer Bonding to Sensors and Actuators (p. 192)
  • 5.4.1 Threshold Pressure Switch (p. 192)
  • 5.4.2 Pressure Sensor (p. 195)
  • 5.4.3 Peristaltic Membrane Pump (p. 198)
  • 5.5 Summary (p. 199)
  • References (p. 199)
  • Chapter 6 Packaging for Sensors
  • 6.1 Introduction (p. 203)
  • 6.2 Basic Considerations for Sensor Packaging (p. 204)
  • 6.3 Wafer-Level Packaging (p. 207)
  • 6.3.1 Glass-Sealed Technique (p. 208)
  • 6.3.2 Anodic Bonding (p. 210)
  • 6.4 Assembly Techniques (p. 212)
  • 6.4.1 Die Bonding (p. 212)
  • 6.4.2 Wire Bonding (p. 217)
  • 6.4.3 Chip Coatings (p. 219)
  • 6.4.4 Package Types (p. 220)
  • 6.5 Packaging for Specific Applications (p. 227)
  • 6.5.1 Pressure Sensor Packaging (p. 227)
  • 6.5.2 Accelerometer Packaging (p. 235)
  • 6.6 Summary (p. 237)
  • References (p. 237)
  • Chapter 7 Magnetic Field Sensors Based on Lateral Magnetotransistors
  • 7.1 Introduction (p. 239)
  • 7.2 Lateral Magnetotransistors (p. 240)
  • 7.2.1 Combined Action of an Electric Field and a Magnetic Field (p. 241)
  • 7.2.2 Lateral Magnetotransistor in CMOS Technology (p. 242)
  • 7.2.3 Suppressed Sidewall Injection Magnetotransistor in CMOS Technology (p. 243)
  • 7.2.4 Suppressed Sidewall Injection Magnetotransistor in Bipolar Technology (p. 255)
  • 7.2.5 Offset in Magnetotransistors (p. 258)
  • 7.2.6 Noise in Magnetotransistors (p. 260)
  • 7.2.7 Surface Effects (p. 268)
  • 7.3 Multidimensional Sensing (p. 270)
  • 7.3.1 Lateral Magnetotransistor Sensitive to Magnetic Field Either Parallel or Perpendicular to the Chip Surface (p. 271)
  • 7.3.2 Two-Dimensional Sensing (p. 273)
  • 7.3.3 Three-Dimensional Sensing (p. 277)
  • 7.4 Summary (p. 282)
  • References (p. 282)
  • Chapter 8 Thermal Sensors
  • 8.1 Introduction (p. 287)
  • 8.2 Bipolar Devices as Temperature Sensors (p. 288)
  • 8.2.1 Diodes as Temperature Sensors (p. 289)
  • 8.2.2 Bipolar Transistors as Temperature Sensors (p. 290)
  • 8.2.3 Stability (p. 294)
  • 8.3 Integrated Temperature Sensors in Bipolar Technology (p. 294)
  • 8.4 Intrinsically Referenced Temperature Sensors (p. 300)
  • 8.5 Temperature Sensors in CMOS Technology (p. 302)
  • 8.5.1 Bipolar Transistors in CMOS Technology (p. 302)
  • 8.5.2 Integrated Temperature Sensors in CMOS Technology Based on Bipolar Transistors (p. 304)
  • 8.5.3 Temperature Sensors Based on MOS Transistors and Resistors (p. 307)
  • 8.5.4 Temperature Sensors with Digital Output (p. 309)
  • 8.6 Polysilicon Resistors (p. 311)
  • 8.7 Summary (p. 313)
  • References (p. 313)
  • Chapter 9 Planar Silicon Photosensors
  • 9.1 Introduction (p. 317)
  • 9.2 Planar Silicon Photodiodes (p. 320)
  • 9.3 Fundamentals of Photosensors (p. 322)
  • 9.3.1 Material Properties (p. 322)
  • 9.3.2 Quantum Efficiency (p. 326)
  • 9.3.3 Collection Efficiency Models (p. 327)
  • 9.3.4 Photocurrent (p. 330)
  • 9.3.5 Noise Current (p. 331)
  • 9.3.6 Response Time (p. 333)
  • 9.4 Level of Integration (p. 334)
  • 9.5 Summary (p. 337)
  • References (p. 338)
  • Chapter 10 Charge Coupled Devices
  • 10.1 Introduction (p. 341)
  • 10.2 Basic Concepts (p. 342)
  • 10.2.1 CCD Charge Storage Fundamentals (p. 342)
  • 10.2.2 CCD Architectures (p. 343)
  • 10.2.3 Three-Phase CCD Example (p. 344)
  • 10.3 Quantum Efficiency (p. 347)
  • 10.3.1 QE Model (p. 348)
  • 10.3.2 Quantum Yield and Photon Transfer Curve (p. 348)
  • 10.3.3 Backside Illumination and Thinning (p. 350)
  • 10.3.4 Details of Flashgate Theory (p. 352)
  • 10.3.5 Thinning Technology and Backside Performance (p. 357)
  • 10.3.6 Alternative Approaches for High QE (p. 358)
  • 10.4 Charge Collection Efficiency (p. 360)
  • 10.5 Charge Transfer Efficiency (p. 366)
  • 10.6 Read Noise (p. 369)
  • 10.7 Summary (p. 373)
  • Acknowledgments (p. 374)
  • References (p. 374)
  • Chapter 11 Sensors for the Automotive Industry (p. 377)
  • 11.1 Introduction (p. 384)
  • 11.2 Sensing Technology in Vehicle Systems (p. 384)
  • 11.2.1 Manifold Absolute Pressure (p. 386)
  • 11.2.2 Tire Pressure Sensor (p. 390)
  • 11.2.3 Position, Rotation, and Speed Sensing (p. 391)
  • 11.2.4 Flow (p. 399)
  • 11.2.5 Accelerometers (p. 401)
  • 11.3 Future Automotive Sensing (p. 407)
  • 11.3.1 High-Temperature Operation (p. 407)
  • 11.3.2 Liquid Level (p. 407)
  • 11.3.3 Chemical Sensing (p. 408)
  • 11.3.4 Oil Quality (p. 410)
  • 11.3.5 Capability to Compute Rather than Sense (p. 410)
  • 11.3.6 Vehicle Diagnostics (p. 412)
  • 11.3.7 RF Sensor Applications (p. 413)
  • 11.3.8 Future Sensor Requirements (p. 414)
  • 11.4 Summary (p. 417)
  • References (p. 418)
  • Chapter 12 Signal Processing for Micromachined Sensors
  • 12.1 Introduction (p. 421)
  • 12.2 Sensing Methods (p. 421)
  • 12.2.1 Piezoelectric Sensing (p. 422)
  • 12.2.2 Piezoresistive Sensing (p. 424)
  • 12.2.3 Capacitive Sensing (p. 428)
  • 12.3 Open- and Closed-Loop Systems (p. 433)
  • 12.3.1 Different Micromachined Structures--Mechanical Issues (p. 433)
  • 12.3.2 Open-Loop Capacitive Sensing (p. 438)
  • 12.3.3 Closed-Loop Capacitive Sensing (p. 440)
  • 12.4 Integration (p. 446)
  • 12.4.1 Integrated Pressure Sensor (p. 446)
  • 12.4.2 Integrated Accelerometer (p. 446)
  • 12.4.3 Dynamic Considerations (p. 448)
  • 12.4.4 Shock Considerations (p. 450)
  • 12.4.5 Self-Test Features (p. 452)
  • 12.4.6 Testing and Trimming (p. 453)
  • 12.5 Summary (p. 455)
  • References (p. 455)
  • Chapter 13 Controlled Oscillators and Their Applicability to Sensors
  • 13.1 Introduction (p. 457)
  • 13.2 Controlled Sinusoidal Oscillators (p. 458)
  • 13.2.1 The Oscillator Circuit and Its Control Characteristics (p. 458)
  • 13.2.2 Oscillator Amplitude and Frequency Transients (p. 461)
  • 13.2.3 Interaction of the Frequency and Amplitude Controls (p. 463)
  • 13.2.4 Sinusoidal Oscillators in Applications (p. 466)
  • 13.3 Controlled Multivibrators (p. 467)
  • 13.3.1 Multivibrators versus Sinusoidal Oscillators (p. 467)
  • 13.3.2 Multivibrators with Operational Amplifiers (p. 468)
  • 13.3.3 Switches in the Basic Multivibrator Circuits (p. 471)
  • 13.3.4 One-Amplifier Multivibrator (p. 476)
  • 13.3.5 Voltage-to-Frequency Converters (p. 479)
  • 13.3.6 Current-to-Frequency Converters (p. 484)
  • 13.3.7 Duty-Cycle Modulation (p. 504)
  • 13.3.8 Controlled Multivibrators in Applications (p. 507)
  • 13.4 Summary (p. 507)
  • References (p. 508)
  • About the Authors (p. 511)
  • Index (p. 517)

Powered by Koha