MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Electro-optical systems peformance modeling / Gary Waldman, John Wootton.

By: Waldman, Gary.
Contributor(s): Wootton, John, 1947-.
Material type: materialTypeLabelBookSeries: Artech House optoelectronics library.Publisher: Boston : Artech House, c1993Description: xiv, 241 p. : ill. ; 24 cm.ISBN: 0890065411.Subject(s): Electrooptical devices -- Mathematical models | System analysisDDC classification: 621.367
Contents:
Introduction and overview -- Qualitative discussion of sensors -- Sources and transfer of radiation -- Targets and backgrounds -- Atmospherics -- System modeling -- The human observer -- End-to-end models.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 621.367 (Browse shelf(Opens below)) 1 Available 00009844
Total holds: 0

Enhanced descriptions from Syndetics:

This book demonstrates how to model the entire target acquisition process using either visible or infrared imaging systems. Beginning with an overview on electro-optical system design, the text introduces the complexity of various design considerations. A discussion of the differing types of visible and infrared sensors outlines basic wavelength issues and provides definitions of baseline hardware solutions.

Includes bibliographical references and index.

Introduction and overview -- Qualitative discussion of sensors -- Sources and transfer of radiation -- Targets and backgrounds -- Atmospherics -- System modeling -- The human observer -- End-to-end models.

Table of contents provided by Syndetics

  • Preface (p. xiii)
  • Chapter 1 Introduction and Overview (p. 1)
  • 1.1 Introduction (p. 1)
  • 1.2 Why the Emphasis on Electro-Optical System Engineering? (p. 2)
  • 1.3 Understanding the True Requirements (p. 4)
  • 1.4 Understanding the Implied Variables (p. 7)
  • 1.5 Modeling Philosophy (p. 10)
  • 1.6 Spatial versus Frequency Domain Analysis (p. 12)
  • 1.7 Parametric Analysis Modeling versus Synthetic Video Representation (p. 13)
  • 1.8 Overview of the Book (p. 14)
  • References (p. 14)
  • Chapter 2 Qualitative Discussion of Sensors (p. 15)
  • 2.1 Wavelength Issues (p. 15)
  • 2.1.1 Why the Choice of Various Spectral Bands? (p. 18)
  • 2.1.2 Resolution (p. 21)
  • 2.2 TV Sensors (p. 22)
  • 2.3 Telescopic Sight (p. 25)
  • 2.4 IR Sensing Systems (p. 27)
  • 2.4.1 Basic FLIR Descriptions (p. 28)
  • 2.4.1.1 Serial Scanned, Standard Video Devices (p. 31)
  • 2.4.1.2 Parallel Scanned, Parallel Video System (p. 33)
  • 2.4.1.3 Parallel Scanned, Standard Video Devices (p. 35)
  • 2.4.1.4 Staring Arrays (p. 35)
  • 2.4.2 Current Tactical Imaging Systems (p. 36)
  • 2.4.3 FLIR Components (p. 37)
  • 2.4.3.1 Cryogenics (p. 37)
  • 2.4.3.2 Detectors (p. 39)
  • 2.4.4 Advances in Detectors and Applications (p. 44)
  • 2.4.5 A Look into the Future (p. 45)
  • Reference (p. 45)
  • Chapter 3 Sources and Transfer of Radiation (p. 47)
  • 3.1 Radiometric and Photometric Quantities (p. 47)
  • 3.2 Physical Laws of Radiometry (p. 48)
  • 3.2.1 Planck's Law (p. 48)
  • 3.2.2 Wien's Displacement Law (p. 49)
  • 3.2.3 Stefan-Boltzmann Law (p. 49)
  • 3.2.4 Kirchhoff's Law (p. 50)
  • 3.2.5 Lambert's Law (p. 51)
  • 3.3 Calculation Aids and Data Sources (p. 53)
  • 3.4 The Geometry of Radiative Transfer (p. 54)
  • 3.5 Sources in Nature (p. 56)
  • Chapter 4 Targets and Backgrounds (p. 65)
  • 4.1 Blackbodies, Graybodies, and Reality (p. 65)
  • 4.1.1 Targets (p. 66)
  • 4.1.2 Backgrounds (p. 67)
  • 4.1.2.1 Terrain Backgrounds (p. 67)
  • 4.1.2.2 Marine Backgrounds (p. 69)
  • 4.1.2.3 Sky Backgrounds (p. 70)
  • 4.2 Uniform and Nonuniform Scenes (p. 71)
  • 4.2.1 Faceted Targets (p. 72)
  • 4.2.2 Background Statistics (p. 74)
  • 4.3 Clutter (p. 76)
  • References (p. 78)
  • Chapter 5 Atmospherics (p. 81)
  • 5.1 Basic Processes (p. 81)
  • 5.1.1 Extinction (p. 81)
  • 5.1.1.1 Scattering (p. 83)
  • 5.1.1.2 Absorption (p. 86)
  • 5.1.2 Emission (p. 86)
  • 5.1.3 Turbulence (p. 88)
  • 5.2 Computational Methods (p. 88)
  • 5.2.1 A Simple Visible Algorithm (p. 88)
  • 5.2.1.1 Contrast (p. 88)
  • 5.2.1.2 Visibility (p. 92)
  • 5.2.2 Uvtran (p. 93)
  • 5.2.3 Empirical Method for IR Extinction (p. 93)
  • 5.2.3.1 Empirical IR Absorption (p. 95)
  • 5.2.3.2 Empirical IR Scattering (p. 97)
  • 5.2.3.3 Example of Empirical Method (p. 98)
  • 5.2.4 Lowtran (p. 99)
  • 5.2.4.1 Prediction Charts (p. 100)
  • 5.2.4.2 Laser Wavelengths (p. 101)
  • 5.2.5 Hitran and Fascode (p. 102)
  • 5.2.6 Eosael (p. 102)
  • 5.2.7 Precipitation (p. 102)
  • 5.2.7.1 Rain (p. 102)
  • 5.2.7.2 Snow (p. 104)
  • 5.2.8 Turbulence (p. 105)
  • 5.3 Overview of Atmospheric Modeling (p. 106)
  • References (p. 108)
  • Chapter 6 System Modeling (p. 109)
  • 6.1 Overview (p. 109)
  • 6.1.1 Linear Systems (p. 110)
  • 6.1.2 Dirac Delta Functions (p. 113)
  • 6.1.3 Fourier Transform (p. 118)
  • 6.1.4 Extensions to TV and FLIR Analysis (p. 120)
  • 6.1.5 Frequently Used Functions and Useful Fourier Transform Pairs (p. 122)
  • 6.2 Optics (p. 123)
  • 6.2.1 Perfect Imaging Systems (p. 124)
  • 6.2.1.1 Magnification (p. 124)
  • 6.2.1.2 Effective Focal Length (p. 125)
  • 6.2.1.3 Principal Planes (p. 126)
  • 6.2.1.4 Ray Tracing (p. 127)
  • 6.2.1.5 Stops and Pupils (p. 129)
  • 6.2.1.6 Conjugate Relations (p. 131)
  • 6.2.1.7 Field of View (p. 132)
  • 6.2.1.8 Vignetting (p. 133)
  • 6.2.1.9 Image Radiometry (p. 133)
  • 6.2.2 Diffraction (p. 136)
  • 6.2.3 Aberrations (p. 137)
  • 6.2.4 Optical Transfer Function (p. 137)
  • 6.2.4.1 Diffraction-Limited Imaging (p. 138)
  • 6.2.4.2 Imaging with Aberrations (p. 139)
  • 6.2.5 Afocal or Telescopic Systems (p. 141)
  • 6.3 Electronics (p. 143)
  • 6.3.1 FLIR Scanners (p. 144)
  • 6.3.1.1 Type of Scanners (p. 145)
  • 6.3.1.2 Scanning Techniques (p. 145)
  • 6.3.1.3 Scan Patterns (p. 145)
  • 6.3.1.4 Scanning Parameters and Signal-to-Noise Ratio (p. 147)
  • 6.3.1.5 Dead Time Relationships (p. 148)
  • 6.3.1.6 Variable Scan Velocity (p. 148)
  • 6.3.1.7 Overlap (or Overscan) Relationships (p. 148)
  • 6.3.1.8 Shading Effects (p. 149)
  • 6.3.1.9 Summary of Scanning Mechanisms and Techniques (p. 150)
  • 6.3.2 Detectors (p. 150)
  • 6.3.2.1 Optical Detectors (p. 151)
  • 6.3.2.2 IR Detectors (p. 154)
  • 6.3.2.3 Common Detector Arrangements (p. 157)
  • 6.3.2.4 MTF of a Sensor Using the SPRITE Detector (p. 157)
  • 6.3.3 Signal Processing (p. 158)
  • 6.3.3.1 ac Coupling (p. 159)
  • 6.3.3.2 dc Restoration (p. 161)
  • 6.3.3.3 Time Delay and Integration (p. 161)
  • 6.3.3.4 Electronics MTF (p. 162)
  • 6.3.3.5 High-Pass Filter (p. 162)
  • 6.3.3.6 Low-Pass Filter (p. 162)
  • 6.3.3.7 All-Pass Lead (p. 164)
  • 6.3.3.8 Boosting Circuits (p. 164)
  • 6.4 Displays (p. 164)
  • 6.4.1 LED (p. 165)
  • 6.4.2 CRT (p. 166)
  • 6.4.2.1 Transfer Characteristics (p. 166)
  • 6.4.2.2 Image Size (p. 169)
  • 6.4.2.3 Resolution (p. 170)
  • 6.4.3 System Magnification (p. 172)
  • 6.5 Summary Performance Measures (p. 173)
  • 6.5.1 MTF (p. 173)
  • 6.5.2 TV-Limiting Resolution (p. 174)
  • 6.5.3 Noise-Equivalent Temperature Difference (p. 175)
  • 6.5.4 Minimum Resolvable Temperature Difference (p. 176)
  • 6.5.5 Minimum Detectable Temperature Difference (p. 179)
  • References (p. 180)
  • Chapter 7 The Human Observer (p. 181)
  • 7.1 Basics of Vision (p. 182)
  • 7.1.1 Anatomy of the Eye (p. 182)
  • 7.1.2 Foveal Vision (p. 183)
  • 7.2 Acquisition of Targets (p. 186)
  • 7.2.1 Contrast Threshold (p. 188)
  • 7.2.2 Johnson's Criteria (p. 190)
  • 7.2.3 Display Signal-to-Noise Ratio (p. 192)
  • 7.2.4 Search (p. 194)
  • 7.2.5 Motion (p. 194)
  • 7.3 Acquisition Models (p. 195)
  • 7.3.1 Probability of Acquisition (p. 195)
  • 7.3.2 Early Models (p. 197)
  • 7.3.2.1 MARSAM (p. 197)
  • 7.3.2.2 SRI LLLTV Model (p. 200)
  • 7.3.2.3 Bailey-Rand Model (p. 200)
  • 7.3.3 C2NVEO Models (p. 202)
  • 7.3.4 Spatial Domain Empirical Model (p. 203)
  • References (p. 204)
  • Chapter 8 End-to-End Models (p. 207)
  • 8.1 Introduction and Overview (p. 207)
  • 8.2 Models to 1975 (p. 208)
  • 8.2.1 SRI LLLTV Model (p. 208)
  • 8.2.2 MARSAM FLIR Model (p. 211)
  • 8.2.3 Bailey-Rand Model (p. 213)
  • 8.2.4 The GAVID Model (p. 216)
  • 8.3 Night Vision Lab Suite (p. 218)
  • 8.3.1 NVL Static Performance (Ratches) Model (p. 218)
  • 8.3.2 Image Intensifier Performance Model (p. 220)
  • 8.3.3 FLIR90 (p. 222)
  • 8.4 Other Contemporary Models (p. 223)
  • 8.4.1 VOM (p. 223)
  • 8.4.2 TTIM (p. 225)
  • 8.4.3 The PHIND Model (p. 227)
  • 8.4.4 VISDET and IRDET (p. 230)
  • 8.4.4.1 VISDET (p. 231)
  • 8.4.4.2 IRDET (p. 233)
  • 8.5 Conclusion (p. 235)
  • References (p. 235)
  • Index (p. 237)

Powered by Koha