MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Principles of mobile communication / Gordon L. Stuber.

By: Stüber, Gordon L, 1958-.
Material type: materialTypeLabelBookPublisher: Boston : Kluwer Academic, 1996Description: xiii, 665 p. : ill ; 25 cm. + hbk.ISBN: 0792397320 .Subject(s): Mobile communication systemsDDC classification: 621.3845
Contents:
Introduction -- Propagation modeling -- Co-channel interference -- Modulated signals and their power spectral densities -- Digital signaling on flat fading channels -- Digital signaling on ISI channels -- Bandwidth efficient coding -- Code division multiple access -- Cellular coverage planning -- Link quality measurement and handoff initiation -- Channel assignment techniques.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 621.3845 (Browse shelf(Opens below)) 1 Available 00069736
Total holds: 0

Enhanced descriptions from Syndetics:

This work provides an authoritative treatment of the fundamentals of mobile communications, one of the fastest growing areas of the modern telecommunications industry. It stresses the fundamentals of mobile communications engineering that are important for the design of any mobile system. Less emphasis is placed on the description of existing and proposed wireless standards. This focus on fundamental issues should be of benefit not only to students taking formal instruction but also to practising engineers who are likely to already have a detailed familiarity with the standards and are seeking to deepen their knowledge of this field. The book stresses mathematical modelling and analysis, rather than providing a qualitative overview. It has been developed specifically as a textbook for graduate level instruction and a reference book for practising engineers and those seeking to pursue research in the area. The book contains sufficient background material for the novice, yet enough advanced material for a sequence of graduate level courses.

Includes bibliographical references (p. 629-658) and index.

Introduction -- Propagation modeling -- Co-channel interference -- Modulated signals and their power spectral densities -- Digital signaling on flat fading channels -- Digital signaling on ISI channels -- Bandwidth efficient coding -- Code division multiple access -- Cellular coverage planning -- Link quality measurement and handoff initiation -- Channel assignment techniques.

Table of contents provided by Syndetics

  • Preface (p. xiii)
  • 1. Introduction (p. 1)
  • 1.1 Wireless Systems and Standards (p. 3)
  • 1.1.1 First Generation Cellular Systems (p. 3)
  • 1.1.2 Second Generation Cellular Systems (p. 3)
  • 1.1.2.1 GSM/DCS1800/PCS1900 (p. 3)
  • 1.1.2.2 IS-54/136 and IS-95 (p. 5)
  • 1.1.2.3 PDC (p. 7)
  • 1.1.3 Cordless Telephone Systems (p. 7)
  • 1.1.4 Third Generation Cellular Systems (p. 8)
  • 1.1.5 Wireless LANs and and PANs (p. 14)
  • 1.2 Frequency Reuse and the Cellular Concept (p. 16)
  • 1.3 Mobile Radio Propagation Environment (p. 19)
  • 1.4 Co-channel Interference and Noise (p. 21)
  • 1.5 Receiver Sensitivity and Link Budget (p. 23)
  • 1.6 Coverage (p. 28)
  • 1.7 Spectral Efficiency and Capacity (p. 30)
  • 2. Propagation Modeling (p. 39)
  • 2.1 Frequency-Non-Selective (Flat) Multipath-Fading (p. 41)
  • 2.1.1 Received Signal Correlation and Spectrum (p. 44)
  • 2.1.2 Received Envelope and Phase Distribution (p. 50)
  • 2.1.2.1 Rayleigh Fading (p. 50)
  • 2.1.2.2 Ricean Fading (p. 51)
  • 2.1.2.3 Nakagami Fading (p. 53)
  • 2.1.2.4 Envelope Phase (p. 55)
  • 2.1.3 Envelope Correlation and Spectra (p. 56)
  • 2.1.3.1 Squared-Envelope Correlation and Spectra (p. 60)
  • 2.1.4 Level Crossing Rates and Fade Durations (p. 61)
  • 2.1.4.1 Envelope Level Crossing Rate (p. 61)
  • 2.1.4.2 Zero Crossing Rate (p. 66)
  • 2.1.4.3 Average Envelope Fade Duration (p. 66)
  • 2.1.5 Spatial Correlations (p. 67)
  • 2.1.5.1 Received Signal at the Base Station (p. 68)
  • 2.2 Frequency-Selective Multipath-Fading (p. 70)
  • 2.2.1 Statistical Channel Correlation Functions (p. 74)
  • 2.2.2 Classification of Channels (p. 75)
  • 2.2.3 Channel Output Autocorrelation (p. 79)
  • 2.3 Laboratory Simulation of Multipath-Fading Channels (p. 80)
  • 2.3.1 Filtered Gaussian Noise (p. 80)
  • 2.3.2 Sum of Sinusoids Method (p. 81)
  • 2.3.3 Multiple Faded Envelopes (p. 85)
  • 2.3.4 Simulation of Wide-band Multipath-Fading Channels (p. 90)
  • 2.4 Shadowing (p. 98)
  • 2.4.1 Laboratory Simulation of Shadowing (p. 99)
  • 2.4.2 Composite Shadowing-Fading Distributions (p. 100)
  • 2.4.2.1 Composite Gamma-log-normal Distribution (p. 102)
  • 2.5 Path Loss Models (p. 103)
  • 2.5.1 Path Loss in Macrocells (p. 103)
  • 2.5.1.1 Okumura-Hata and CCIR Models (p. 104)
  • 2.5.1.2 Lee's Area-to-Area Model (p. 105)
  • 2.5.2 Path Loss in Outdoor Microcells (p. 108)
  • 2.5.2.1 COST231-Hata Model (p. 108)
  • 2.5.2.2 COST231-Walfish-Ikegami Model (p. 109)
  • 2.5.2.3 Street Microcells (p. 111)
  • 2.5.3 Path Loss in Indoor Microcells (p. 114)
  • 3. Co-Channel Interference (p. 127)
  • 3.1 Multiple Log-normal Interferers (p. 129)
  • 3.1.1 Fenton-Wilkinson Method (p. 130)
  • 3.1.2 Schwartz-and Yeh-Method (p. 132)
  • 3.1.3 Farley's Method (p. 134)
  • 3.1.4 Numerical Comparisons (p. 135)
  • 3.2 Probability of Outage (p. 135)
  • 3.3 Multiple Ricean/Rayleigh Interferers (p. 139)
  • 3.4 Multiple Log-normal Nakagami Interferers (p. 140)
  • 3.4.1 Statistically Identical Interferers (p. 142)
  • 3.5 Multiple Log-normal Ricean/Rayleigh Interferers (p. 146)
  • 3.5.1 Single Interferer (p. 148)
  • 3.5.2 Multiple Interferers (p. 148)
  • 4. Modulated Signals and Their Power Spectra (p. 153)
  • 4.1 Representation of Band-pass Modulated Signals (p. 154)
  • 4.1.1 Vector Space Representations (p. 155)
  • 4.1.2 Gram-Schmidt Procedure (p. 156)
  • 4.1.3 Signal Energy and Correlations (p. 159)
  • 4.2 Nyquist Pulse Shaping (p. 161)
  • 4.3 Quadrature Amplitude Modulation (QAM) (p. 165)
  • 4.4 Phase Shift Keying (PSK) (p. 168)
  • 4.4.1 Offset QPSK (OQSPK) (p. 169)
  • 4.4.2 [pi]/4-DQPSK (p. 171)
  • 4.5 Orthogonal Modulation and Variants (p. 172)
  • 4.6 Orthogonal Frequency Division Multiplexing (OFDM) (p. 175)
  • 4.6.1 Multiresolution Modulation (p. 177)
  • 4.6.2 FFT-Based OFDM System (p. 177)
  • 4.7 Continuous Phase Modulation (CPM) (p. 182)
  • 4.7.1 Full Response CPM (p. 183)
  • 4.7.1.1 Minimum Shift Keying (MSK) (p. 184)
  • 4.8 Partial Response CPM (p. 186)
  • 4.8.1 Gaussian Minimum Shift Keying (GMSK) (p. 189)
  • 4.8.2 Linearized GMSK (LGMSK) (p. 192)
  • 4.8.3 Tamed Frequency Modulation (TFM) (p. 195)
  • 4.9 Power Spectral Densities of Digitally Modulated Signals (p. 198)
  • 4.9.1 Psd of a Complex Envelope (p. 199)
  • 4.9.2 Psd of QAM (p. 205)
  • 4.9.3 Psd of PSK (p. 206)
  • 4.9.4 Psd of OQPSK (p. 206)
  • 4.9.5 Psd of [pi]/4-DQPSK (p. 207)
  • 4.9.6 Psd of OFDM (p. 208)
  • 4.9.7 Psd of Full Response CPM (p. 211)
  • 4.9.7.1 Psd of CPFSK (p. 215)
  • 4.9.7.2 Psd of MSK (p. 217)
  • 4.9.8 Psd of GMSK and TFM (p. 218)
  • 5. Digital Signaling on Flat Fading Channels (p. 227)
  • 5.1 Vector Space Representation of Received Signals (p. 228)
  • 5.2 Detection of Known Signals in Additive White Gaussian Noise (p. 230)
  • 5.3 Probability of Error (p. 234)
  • 5.3.1 Pairwise Error Probability (p. 236)
  • 5.3.2 Upper Bounds on Error Probability (p. 237)
  • 5.3.3 Lower Bound on Error Probability (p. 239)
  • 5.3.4 Bit Versus Symbol Error Probabilities (p. 239)
  • 5.4 Error Probability of PSK (p. 240)
  • 5.5 Error Probability of M-QAM (p. 246)
  • 5.6 Error Probability of Orthogonal Signals (p. 249)
  • 5.7 Error Probability of OFDM (p. 252)
  • 5.8 Error Probability of MSK (p. 256)
  • 5.9 Differential Detection (p. 258)
  • 5.9.1 Differential Detection of [pi]/4-DQPSK (p. 261)
  • 5.10 Non-coherent Detection (p. 262)
  • 5.11 Detection of CPM Signals (p. 267)
  • 5.11.1 Coherent CPM Demodulator (p. 268)
  • 5.11.2 Non-coherent CPM Demodulator (p. 268)
  • 6. Antenna Diversity (p. 275)
  • 6.1 Diversity Combining (p. 276)
  • 6.2 Selective Combining (p. 277)
  • 6.3 Maximal Ratio Combining (p. 280)
  • 6.4 Equal Gain Combining (p. 284)
  • 6.5 Switched Combining (p. 286)
  • 6.6 Differential Detection with Equal Gain Combining (p. 290)
  • 6.7 Transmitter Diversity (p. 291)
  • 6.7.1 Space-Time Transmit Diversity (p. 293)
  • 7. Equalization and Interference Cancellation (p. 301)
  • 7.1 Overview (p. 302)
  • 7.1.1 Symbol-by-symbol Equalizers (p. 302)
  • 7.1.2 Sequence Estimation (p. 304)
  • 7.1.3 Co-Channel Interference Cancellation (p. 306)
  • 7.2 Modeling of ISI Channels (p. 307)
  • 7.2.1 Vector Representation of Received Signals (p. 309)
  • 7.3 Optimum Receiver for ISI Channels with AWGN (p. 310)
  • 7.3.1 Discrete-Time White Noise Channel Model (p. 311)
  • 7.3.1.1 Time Varying Channels with Diversity (p. 314)
  • 7.3.1.2 T/2-Spaced Receiver (p. 315)
  • 7.4 Symbol-by-Symbol Equalizers (p. 317)
  • 7.4.1 Linear Equalizer (p. 319)
  • 7.4.1.1 Zero-Forcing (ZF) (p. 319)
  • 7.4.1.2 Minimum Mean-Square-Error (MMSE) (p. 322)
  • 7.4.2 Decision Feedback Equalizer (DFE) (p. 326)
  • 7.4.3 Comparison of Symbol-by-Symbol Equalizers (p. 329)
  • 7.5 Sequence Estimation (p. 329)
  • 7.5.1 MLSE and the Viterbi Algorithm (p. 329)
  • 7.5.1.1 Adaptive MLSE Receiver (p. 335)
  • 7.5.1.2 T/2-spaced MLSE Receiver (p. 337)
  • 7.5.2 Delayed Decision-Feedback Sequence Estimation (p. 337)
  • 7.5.3 Reduced-State Sequence Estimation (p. 340)
  • 7.6 Error Probability for MLSE on ISI Channels (p. 341)
  • 7.6.1 Static ISI Channels (p. 344)
  • 7.6.2 Fading ISI Channels (p. 346)
  • 7.6.3 Computing the Union Bound (p. 349)
  • 7.6.3.1 Error-State Diagram (p. 350)
  • 7.6.3.2 The Stack Algorithm (p. 351)
  • 7.6.4 Examples (p. 352)
  • 7.7 Error Probability for T/2-spaced MLSE Receiver (p. 355)
  • 7.7.1 T-spaced MLSE Receiver (p. 355)
  • 7.7.2 T/2-spaced MLSE Receiver (p. 357)
  • 7.7.3 Practical T/2-spaced MLSE Receiver (p. 359)
  • 7.7.4 Timing Phase Sensitivity (p. 361)
  • 7.8 MIMO MLSE Receivers (p. 362)
  • 7.8.1 System and Channel Model (p. 363)
  • 7.8.2 Joint Maximum Likelihood Sequence Estimation (p. 364)
  • 7.8.3 Discrete-time MIMO Channel Model (p. 366)
  • 7.8.4 The Viterbi Algorithm (p. 370)
  • 7.8.5 Pairwise Error Probability (p. 370)
  • 7.8.6 T/2-Spaced MIMO MLSE Receiver (p. 371)
  • 7.8.6.1 Error Probability (p. 373)
  • 7.8.6.2 Timing Phase Sensitivity (p. 374)
  • 7.8.6.3 Practical Receiver (p. 376)
  • 7.8.7 Interference Rejection Combining MLSE (p. 378)
  • 7.8.8 Examples (p. 381)
  • 8. Error Control Coding (p. 391)
  • 8.1 Block Codes (p. 394)
  • 8.1.1 Binary Block Codes (p. 394)
  • 8.1.1.1 Minimum Distance (p. 395)
  • 8.1.1.2 Syndromes (p. 396)
  • 8.1.1.3 Error Detection (p. 396)
  • 8.1.1.4 Weight Distribution (p. 397)
  • 8.1.1.5 Probability of Undetected Error (p. 397)
  • 8.1.1.6 Error Correction (p. 398)
  • 8.1.1.7 Standard Array Decoding (p. 398)
  • 8.1.1.8 Syndrome Decoding (p. 399)
  • 8.2 Convolutional Codes (p. 399)
  • 8.2.1 Encoder Description (p. 399)
  • 8.2.2 State and Trellis Diagrams, and Weight Distribution (p. 402)
  • 8.2.3 Recursive Systematic Convolutional (RSC) Codes (p. 405)
  • 8.3 Trellis Coded Modulation (p. 407)
  • 8.3.1 Encoder Description (p. 407)
  • 8.3.2 Mapping by Set Partitioning (p. 408)
  • 8.4 Coded Performance on AWGN Channels (p. 412)
  • 8.4.1 Union Bound for Convolutional Codes (p. 413)
  • 8.5 Coded Performance on Interleaved Flat Fading Channels (p. 417)
  • 8.5.1 Design Rules for TCM on Flat Fading Channels (p. 422)
  • 8.5.1.1 Multidimensional TCM (p. 423)
  • 8.5.1.2 Multiple TCM (MTCM) (p. 424)
  • 8.5.1.3 2-D Trellis Codes (p. 426)
  • 8.6 Coded Performance on ISI Channels (p. 427)
  • 8.6.1 TCM on Static ISI Channels (p. 429)
  • 8.6.2 TCM on Noninterleaved Fading ISI Channels (p. 429)
  • 8.6.3 Examples (p. 431)
  • 8.6.3.1 Static ISI Channels (p. 431)
  • 8.6.3.2 Multipath Fading ISI Channels (p. 433)
  • 8.6.4 Evaluation of Union Bounds for TCM (p. 436)
  • 8.7 Turbo Codes (p. 443)
  • 8.7.1 PCCC Encoder (p. 444)
  • 8.7.2 PCCC Decoder (p. 446)
  • 8.7.3 SCCC Encoder and Decoder (p. 448)
  • 8.7.4 Weight Distribution (p. 448)
  • 8.7.4.1 Weight Distribution of PCCCs (p. 450)
  • 8.7.4.2 Weight Distribution of SCCCs (p. 453)
  • 9. Spread Spectrum Techniques (p. 457)
  • 9.1 Basic Principles of Spread Spectrum (p. 459)
  • 9.1.1 Direct Sequence (DS) Spread Spectrum (p. 459)
  • 9.1.2 Frequency Hop (FH) Spread Spectrum (p. 462)
  • 9.2 Spreading Sequences (p. 464)
  • 9.2.1 Spreading Waveforms (p. 466)
  • 9.2.2 m-sequences (p. 467)
  • 9.2.3 Gold Sequences (p. 469)
  • 9.2.4 Kasami Sequences (p. 471)
  • 9.2.5 Barker Sequences (p. 472)
  • 9.2.6 Walsh-Hadamard Sequences (p. 473)
  • 9.2.6.1 Orthogonal and Bi-orthogonal Modulation (p. 473)
  • 9.2.7 Variable Length Orthogonal Codes (p. 474)
  • 9.2.8 Complementary Code Keying (CCK) (p. 475)
  • 9.3 Power Spectral Density of DS Spread Spectrum Signals (p. 475)
  • 9.4 Performance of DS/QPSK in Tone Interference (p. 478)
  • 9.2 DS Spread Spectrum on Frequency-Selective Fading Channels (p. 491)
  • 9.5.1 RAKE Receiver (p. 495)
  • 9.6 Error Probability for DS CDMA on AWGN Channels (p. 501)
  • 9.6.1 Standard Gaussian Approximation (p. 505)
  • 9.6.2 Improved Gaussian Approximation (p. 506)
  • 9.6.3 Simplified Gaussian Approximation (p. 507)
  • 10. TDMA Cellular Architectures (p. 515)
  • 10.1 Cell Sectoring (p. 516)
  • 10.1.1 Cell Sectoring with Wide-beam Directional Antennas (p. 516)
  • 10.1.2 Sectoring with Switched-beam Antennas (p. 518)
  • 10.1.3 Turnkpool Techniques (p. 520)
  • 10.1.4 Cellular Performance with Switched-beam Antennas (p. 522)
  • 10.1.4.1 Reverse Channel (p. 523)
  • 10.1.4.2 Forward Channel (p. 524)
  • 10.1.4.3 Performance Criteria and Results (p. 524)
  • 10.2 Conventional Cell Splitting (p. 528)
  • 10.2.1 Reuse Partitioning (p. 530)
  • 10.2.1.1 Cell Splitting with Reuse Partitioning (p. 532)
  • 10.3 Cluster Planned Hierarchical Architecture (p. 532)
  • 10.3.1 System Architecture (p. 533)
  • 10.3.2 Underlaid Microcell Planning Algorithm (p. 534)
  • 10.3.3 Performance Analysis of Cluster Planned Architecture (p. 539)
  • 10.3.3.1 Macrocell Performance (p. 540)
  • 10.3.3.2 Microcell Performance (p. 545)
  • 10.3.3.3 Adjacent Channel Interference Analysis (p. 553)
  • 10.4 Macrodiversity Architectures (p. 554)
  • 10.4.1 Probability of Co-channel Interference Outage (p. 556)
  • 10.4.2 Shadow Correlation (p. 557)
  • 10.4.3 Numercial Examples (p. 559)
  • 11. CDMA Cellular Architectures (p. 567)
  • 11.1 Capacity of Cellular CDMA (p. 568)
  • 11.1.1 Reverse Link Capacity (p. 570)
  • 11.1.2 Forward Link Capacity (p. 577)
  • 11.1.3 Imperfect Power Control (p. 578)
  • 11.2 Error Probability with RAKE Reception (p. 580)
  • 11.2.1 Maximal Ratio Combining (p. 583)
  • 12. Link Quality Measurement and Handoff Initiation (p. 589)
  • 12.1 Signal Strength Based Hard Handoff Algorithms (p. 595)
  • 12.2 Pilot-to-Interference Ratio Based Soft Handoff Algorithms (p. 597)
  • 12.3 Signal Strength Averaging (p. 598)
  • 12.3.1 Choosing the Proper Window Length (p. 599)
  • 12.3.2 Choosing the Proper Number of Samples to Average (p. 601)
  • 12.4 Velocity Estimation in Cellular Systems (p. 604)
  • 12.4.1 Level Crossing Rate Estimators (p. 606)
  • 12.4.2 Covariance Approximation Methods (p. 608)
  • 12.4.3 Velocity Estimator Sensitivity (p. 611)
  • 12.4.3.1 Effect of the Scattering Distribution (p. 612)
  • 12.4.3.2 Effects of Additive Gaussian Noise (p. 615)
  • 12.5 Velocity Adaptive Handoff Algorithms (p. 617)
  • 12.5.1 Effect of N[subscript lambda] (p. 618)
  • 12.5.2 Corner Effects and Sensitivity to a and W[subscript iota] (p. 619)
  • 12.5.3 Velocity Adaptive Handoff Performance (p. 620)
  • 12.6 Hard Handoff Analysis (p. 621)
  • 12.6.1 Simulation Results (p. 626)
  • 12.7 Soft Handoff Analysis (p. 627)
  • 12.7.1 Simulation Results (p. 629)
  • 12.8 CIR-based Link Quality Measurements (p. 631)
  • 12.8.1 Discrete-Time Model for Signal Quality Estimation (p. 632)
  • 12.8.1.1 Estimation of (I+N) (p. 633)
  • 12.8.1.2 Estimation of C/(I+N) (p. 635)
  • 12.8.2 Training Sequence Based C/(I+N) Estimation (p. 636)
  • 12.9 Summary (p. 638)
  • 13. Channel Assignment Techniques (p. 645)
  • 13.1 Centralized DCA (p. 650)
  • 13.1.1 Maximum Packing (MP) (p. 650)
  • 13.1.2 MAXMIN Scheme (p. 652)
  • 13.2 Decentralized DCA (p. 653)
  • 13.2.1 First Available (FA) and Nearest Neighbor (NN) (p. 653)
  • 13.2.2 Dynamic Resource Acquisition (DRA) (p. 654)
  • 13.3 Fully Decentralized DCA (p. 655)
  • 13.3.1 Channel Segregation (CS) (p. 655)
  • 13.3.2 Channel Segregation with Variable Threshold (p. 655)
  • 13.3.3 Minimum Interference (MI) Schemes (p. 657)
  • 13.3.4 Aggressive and Timid DCA Strategies (p. 657)
  • 13.4 Hybrid FCA/DCA Schemes (p. 659)
  • 13.5 Borrowing Schemes (p. 660)
  • 13.5.1 Borrowing with Channel Ordering (BCO) (p. 660)
  • 13.5.2 Borrowing with Directional Locking (p. 662)
  • 13.5.3 Borrowing without Locking (p. 663)
  • 13.5.4 Compact Pattern Based DCA (p. 664)
  • 13.6 Directed Retry and Directed Handoff (p. 665)
  • 13.7 Moving Direction Strategies (p. 665)
  • 13.8 Reduced Transceiver Coverage (p. 666)
  • 13.8.1 Reuse Partitioning (p. 666)
  • 13.9 Handoff Priority (p. 667)
  • 13.10 Example DCA Schemes for TDMA Systems (p. 668)
  • 13.10.1 The Simple DCA (SDCA) Strategy (p. 670)
  • 13.10.2 A Queueing DCA Strategy (p. 670)
  • 13.10.3 An Aggressive DCA Strategy (p. 673)
  • 13.10.4 Simulation Model, Results, and Discussion (p. 676)
  • 13.11 Concluding Remarks (p. 682)
  • Appendix A Probability and Random Processes (p. 685)
  • A.1 Conditional Probability and Bayes' Theorem (p. 685)
  • A.2 Means, Moments, and Moment Generating Functions (p. 687)
  • A.3 Some Useful Probability Distributions (p. 688)
  • A.3.1 Discrete Distributions (p. 688)
  • A.3.2 Continuous Distributions (p. 689)
  • A.4 Upper Bounds on the cdfc (p. 694)
  • A.5 Random Processes (p. 697)
  • A.5.1 Moments and Correlation Functions (p. 698)
  • A.5.2 Crosscorrelation and Crosscovariance (p. 703)
  • A.5.3 Complex-Valued Random Processes (p. 705)
  • A.5.4 Power Spectral Density (p. 706)
  • A.5.5 Random Processes Filtered by Linear Systems (p. 707)
  • A.5.6 Discrete-time Random Processes (p. 709)
  • A.5.7 Cyclostationary Random Processes (p. 711)
  • References (p. 713)
  • Index (p. 745)

Powered by Koha