MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Introductory circuit analysis / Robert L. Boylestad.

By: Boylestad, Robert L.
Material type: materialTypeLabelBookPublisher: Upper Saddle River, N.J. : Pearson Education, 2007Edition: 11th ed.Description: xvi, 1156 p. : ill. (some col.) ; 28 cm. + 1 computer optical disc (4 3/4 in.).ISBN: 0131988263.Subject(s): Electric circuits | Electric circuit analysis -- Data processing | PSpiceDDC classification: 621.3192
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 621.3192 (Browse shelf(Opens below)) 1 Available 00116609
General Lending MTU National Maritime College of Ireland Library Lending 621.3192 (Browse shelf(Opens below)) 1 Available 00109150
General Lending MTU National Maritime College of Ireland Library CD 621.3192 (Browse shelf(Opens below)) 1 Available 00109151
Total holds: 0

Enhanced descriptions from Syndetics:

This text on circuit analysis also takes in integrated circuits with lots of examples and homework problems. Dos and Windows versions of PSpice are covered and the book takes in C++ in response to user's comments.

Includes index.

CIT Module ELEC 6015 - Core reading

CIT Module ELTR 6007 - Supplementary reading

CIT Module ELTR 6009 - Core reading

CIT Module ELTR 6010 - Core reading

NMCI CD-ROM available in multimedia section.

CIT CD-ROM available at desk.

Table of contents provided by Syndetics

  • Chapter 1 Introduction
  • 1.1 The Electrical/Electronics Industry
  • 1.2 A Brief History
  • 1.3 Units of Measurement
  • 1.4 Systems of Units
  • 1.5 Significant Figures, Accuracy, and Rounding Off
  • 1.6 Powers of Ten
  • 1.7 Fixed-Point, Floating-Point, Scientific, and Engineering Notation
  • 1.8 Conversion between Levels of Powers of Ten
  • 1.9 Conversion within and between Systems of Units
  • 1.10 Symbols
  • 1.11 Conversion Tables
  • 1.12 Calculators
  • 1.13 Computer Analysis
  • Chapter 2 Voltage and Current
  • 2.1 Introduction
  • 2.2 Atoms and Their Structure
  • 2.3 Voltage
  • 2.4 Current
  • 2.5 Voltage Sources
  • 2.6 Ampere-Hour Rating
  • 2.7 Battery Life Factors
  • 2.8 Conductors and Insulators
  • 2.9 Semiconductors
  • 2.10 Ammeters and Voltmeters
  • 2.11 Applications
  • 2.12 Computer Analysis
  • Chapter 3 Resistance
  • 3.1 Introduction
  • 3.2 Resistance: Circular Wires
  • 3.3 Wire Tables
  • 3.4 Resistance: Metric Units
  • 3.5 Temperature Effects
  • 3.6 Superconductors
  • 3.7 Types of Resistors
  • 3.8 Color Coding and Standard Resistor Values
  • 3.9 Conductance
  • 3.10 Ohmmeters
  • 3.11 Thermistors
  • 3.12 Photoconductive Cell
  • 3.13 Varistors
  • 3.14 Applications
  • 3.15 Mathcad
  • Chapter 4 Ohm's Law, Power, and Energy
  • 4.1 Introduction
  • 4.2 Ohm's Law
  • 4.3 Plotting Ohm's Law
  • 4.4 Power
  • 4.5 Energy
  • 4.6 Efficiency
  • 4.7 Circuit Breakers, GFCIs, and Fuses
  • 4.8 Applications
  • 4.9 Computer Analysis
  • Chapter 5 Series dc Circuits
  • 5.1 Introduction
  • 5.2 Series Resistors
  • 5.3 Series Circuits
  • 5.4 Power Distribution in a Series Circuit
  • 5.5 Voltage Sources in Series
  • 5.6 Kirchhoff's Voltage Law
  • 5.7 Voltage Division in a Series Circuit
  • 5.8 Interchanging Series Elements
  • 5.9 Notation
  • 5.10 Voltage Regulation and Internal Resistance of Voltage Sources
  • 5.11 Loading Effects of Instruments
  • 5.12 Protoboards (Breadboards)
  • 5.13 Applications
  • 5.14 Computer Analysis
  • Chapter 6 Parallel dc Circuits
  • 6.1 Introduction
  • 6.2 Parallel Resistors
  • 6.3 Parallel Circuits
  • 6.4 Power Distribution in a Parallel Circuit
  • 6.5 Kirchhoff's Current Law
  • 6.6 Current Divider Rule
  • 6.7 Voltage Sources in Parallel
  • 6.8 Open and Short Circuits
  • 6.9 Voltmeter Loading Effects
  • 6.10 Summary Table
  • 6.11 Troubleshooting Techniques
  • 6.12 Protoboards (Breadboards)
  • 6.13 Applications
  • 6.14 Computer Analysis
  • Chapter 7 Series-Parallel Circuits
  • 7.1 Introduction
  • 7.2 Series-Parallel Networks
  • 7.3 Reduce and Return Approach
  • 7.4 Block Diagram Approach
  • 7.5 Descriptive Examples
  • 7.6 Ladder Networks
  • 7.7 Voltage Divider Supply (Unloaded and Loaded)
  • 7.8 Potentiometer Loading
  • 7.9 Ammeter, Voltmeter, and Ohmmeter Design
  • 7.10 Applications
  • 7.11 Computer Analysis
  • Chapter 8 Methods of Analysis and Selected Topics (dc)
  • 8.1 Introduction
  • 8.2 Current Sources
  • 8.3 Source Conversions
  • 8.4 Current Sources in Parallel
  • 8.5 Current Sources in Series
  • 8.6 Branch-Current Analysis
  • 8.7 Mesh Analysis (General Approach)
  • 8.8 Mesh Analysis (Format Approach)
  • 8.9 Nodal Analysis (General Approach)
  • 8.10 Nodal Analysis (Format Approach)
  • 8.11 Bridge Networks
  • 8.12 Y-¿ (T-p) and ¿-Y (p-T) Conversions
  • 8.13 Applications
  • 8.14 Computer Analysis
  • Chapter 9 Network Theorems
  • 9.1 Introduction
  • 9.2 Superposition Theorem
  • 9.3 Thevenin's Theorem
  • 9.4 Norton's Theorems
  • 9.5 Maximum Power Transfer Theorem
  • 9.6 Millman's Theorem
  • 9.7 Substitution Theorem
  • 9.8 Reciprocity Theorem
  • 9.9 Computer Analysis
  • Chapter 10 Capacitors
  • 10.1 Introduction
  • 10.2 The Electric Field
  • 10.3 Capacitance
  • 10.4 Capacitors
  • 10.5 Transients in Capacitive Networks: The Charging Phase
  • 10.6 Transients in Capacitive Networks: The Discharging Phase
  • 10.7 Initial Conditions
  • 10.8 Instantaneous Values
  • 10.9 Thevenin Equivalent: ¿ = RThC
  • 10.10 The Current ic
  • 10.11 Capacitors in Series and in Parallel
  • 10.12 Energy Stored by a Capacitor
  • 10.13 Stray Capacitances
  • 10.14 Applications
  • 10.15 Computer Analysis
  • Chapter 11 Inductors
  • 11.1 Introduction
  • 11.2 The Magnetic Field
  • 11.3 Inductance
  • 11.4 The Induced Voltage vL
  • 11.5 R-L Transients: The Storage Phase
  • 11.6 Initial Conditions
  • 11.7 R-L Transients: The Release Phase
  • 11.8 Thevenin Equivalent: ¿ = L/RTh
  • 11.9 Instantaneous Values
  • 11.10 Average Induces Voltage: vLav
  • 11.11 Inductors in Series and in Parallel
  • 11.12 Steady-State Conditions
  • 11.13 Energy Stored by an Inductor
  • 11.14 Applications
  • 11.15 Computer Analysis
  • Chapter 12 Magnetic Circuits
  • 12.1 Introduction
  • 12.2 Magnetic Field
  • 12.3 Reluctance
  • 12.4 Ohm's Law for Magnetic Circuits
  • 12.5 Magnetizing Force
  • 12.6 Hysteresis
  • 12.7 Ampere's Circuital Law
  • 12.8 The Flux $
  • 12.9 Series Magnetic Circuits: Determining NI
  • 12.10 Air Gaps
  • 12.11 Series-Parallel Magnetic Circuits
  • 12.12 Determining $
  • 12.13 Applications
  • Chapter 13 Sinusoidal Alternating Waveforms
  • 13.1 Introduction
  • 13.2 Sinusoidal ac Voltage Characteristics and Definitions
  • 13.3 Frequency Spectrum
  • 13.4 The Sinusoidal Waveform
  • 13.5 General Format for the Sinusoidal Voltage or Current
  • 13.6 Phase Relations
  • 13.7 Average Value
  • 13.8 Effective (rms) Values
  • 13.9 ac Meters and Instruments
  • 13.10 Applications
  • 13.11 Computer Analysis
  • Chapter 14 The Basic Elements and Phasors
  • 14.1 Introduction
  • 14.2 The Derivative
  • 14.3 Response of Basic R, L, and C Elements to a Sinusoidal Voltage or Current
  • 14.4 Frequency Response of the Basic Elements
  • 14.5 Average Power and Power Factor
  • 14.6 Complex Numbers
  • 14.7 Rectangular Form
  • 14.8 Polar Form
  • 14.9 Conversion Between Forms
  • 14.10 Mathematical Operations with Complex Numbers
  • 14.11 Calculator and Computer Methods with Complex Numbers
  • 14.12 Phasors
  • 14.13 Computer Analysis
  • Chapter 15 Series and Parallel ac Circuits
  • 15.1 Introduction
  • 15.2 Impedance and the Phasor Diagram
  • 15.3 Series Configuration
  • 15.4 Voltage Divider Rule
  • 15.5 Frequency response for Series ac Circuits
  • 15.6 Summary: Series ac Circuits
  • 15.7 Admittance and Susceptance
  • 15.8 Parallel ac Networks
  • 15.9 Current Divider Rule
  • 15.10 Frequency Response of Parallel Elements
  • 15.11 Summary: Parallel ac Networks
  • 15.12 Equivalent Circuits
  • 15.13 Phase Measurements
  • 15.14 Applications
  • 15.15 Computer Analysis
  • Chapter 16 Series-Parallel ac Networks
  • 16.1 Introduction
  • 16.2 Illustrative Examples
  • 16.3 Ladder Networks
  • 16.4 Grounding
  • 16.5 Applications
  • 16.6 Computer Analysis
  • Chapter 17 Methods of Analysis and Selected Topics (ac)
  • 17.1 Introduction
  • 17.2 Independent versus Dependent (Controlled) Sources
  • 17.3 Source Conversions
  • 17.4 Mesh Analysis
  • 17.5 Nodal Analysis
  • 17.6 Bridge Networks (ac)
  • 17.7 ¿-Y, Y-¿ Conversions
  • 17.8 Computer Analysis
  • Chapter 18 Network Theorems (ac)
  • 18.1 Introduction
  • 18.2 Superposition Theorem
  • 18.3 Thevenin's Theorem
  • 18.4 Norton's Theorem
  • 18.5 Maximum Power Transfer Theorem
  • 18.6 Substitution, Reciprocity, and Millman's Theorems
  • 18.7 Application
  • 18.8 Computer Analysis
  • Chapter 19 Power (ac)
  • 19.1 Introduction
  • 19.2 General Equation
  • 19.3 Resistive Circuit
  • 19.4 Apparent Power
  • 19.5 Inductive Circuit and Reactive Power
  • 19.6 Capacitive Circuit
  • 19.7 The Power Triangle
  • 19.8 The Total P, Q, and S
  • 19.9 Power-Factor Correction
  • 19.10 Power Meters
  • 19.11 Effective Resistance
  • 19.12 Applications
  • 19.13 Computer Analysis
  • Chapter 20 Resonance
  • 20.1 Introduction
  • 20.2 Series Resonant Circuit
  • 20.3 The Quality Factor (Q)
  • 20.4 ZT versus Frequency
  • 20.5 Selectivity
  • 20.6 VR, VL, and VC
  • 20.7 Examples (Series Resonance)
  • 20.8 Parallel Resonant Circuit
  • 20.9 Selectivity Curve for Parallel Resonant Circuits
  • 20.10 Effect of Ql ≥ (p. 10)
  • 20.11 Summary Table
  • 20.12 Examples (Parallel Resonance)
  • 20.13 Applications
  • 20.14 Computer Analysis
  • Chapter 21 Decibels, Filters, and Bode Plots
  • 21.1 Logarithms
  • 21.2 Properties of Logarithms
  • 21.3 Decibels
  • 21.4 Filters
  • 21.5 R-C Low-Pass Filter
  • 21.6 R-C High-Pas Filter
  • 21.7 Pass-Band Filters
  • 21.8 Stop-Band Filters
  • 21.9 Double-Tuned Filter
  • 21.10 Bode Plots
  • 21.11 Sketching the Bode Response
  • 21.12 Low-Pass Filter with Limited Attenuation
  • 21.13 High-Pass Filter with Limited Attenuation
  • 21.14 Other Properties and a Summary Table
  • 21.15 Crossover Networks
  • 21.16 Applications
  • 21.17 Computer Analysis
  • Chapter 22 Transformers
  • 22.1 Introduction
  • 22.2 Mutual Inductance
  • 22.3 The Iron-Core Transformer
  • 22.4 Reflected Impedance and Power
  • 22.5 Impedance Matching, Isolation, and Displacement
  • 22.6 Equivalent Circuit (Iron-Core Transformer)
  • 22.7 Frequency Considerations
  • 22.8 Series Connection of Mutually Coupled Coils
  • 22.9 Air-Core Transformer
  • 22.10 Nameplate Data
  • 22.11 Types of Transformers
  • 22.12 Tapped and Multiple-load Transformers
  • 22.13 Networks with Magnetically Coupled Coils
  • 22.14 Applications
  • 22.15 Computer Analysis
  • Chapter 23 Polyphase Systems
  • 23.1 Introduction
  • 23.2 The Three-Phase Generator
  • 23.3 The Y-Connected Generator
  • 23.4 Phase Sequence (Y-Connected Generator)
  • 23.5 The Y-Connected Generator with a Y-Connected Load
  • 23.6 The Y-¿ System
  • 23.7 The ¿-Connected Generator
  • 23.8 Phase Sequence (¿-Connected Generator)
  • 23.9 The ¿-¿, ¿-Y Three-Phase Systems
  • 23.10 Power
  • 23.11 The Three-Wattmeter Method
  • 23.12 The Two-Wattmeter Method
  • 23.13 Unbalanced, Three-Phase, Four-Wire, Y-Connected Load
  • 23.14 Unbalanced, Three-Phase, Three-Wire, Y-Connected Load
  • Chapter 24 Pulse Waveforms and the R-C Response
  • 24.1 Introduction
  • 24.2 Ideal versus Actual
  • 24.3 Pulse Repetition Rate and Duty Cycle
  • 24.4 Average Value
  • 24.5 Transient R-C Networks
  • 24.6 R-C Response to Square-Wave Inputs
  • 24.7 Oscilloscope Attenuator and Compensating Probe
  • 24.8 Application
  • 24.9 Computer Analysis
  • Chapter 25 Nonsinusoidal Circuits
  • 25.1 Introduction
  • 25.2 Fourier Series
  • 25.3 Circuit response to a Nonsinusoidal Input
  • 25.4 Addition and Subtraction of Nonsinusiodal Waveforms
  • 25.5 Computer Analysis
  • Appendices
  • Index

Powered by Koha