MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Spin dynamics : basics of nuclear magnetic resonance / Malcolm H. Levitt.

By: Levitt, Malcolm H.
Material type: materialTypeLabelBookPublisher: Chichester ; New York : John Wiley & Sons, 2001Description: xxiv, 686 p. : ill. ; 25 cm. + pbk.ISBN: 0471489212; 9780471489214 ; 0471489220 ; 9780471489221.Subject(s): Nuclear spin | Nuclear magnetic resonanceDDC classification: 538.362
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 538.362 (Browse shelf(Opens below)) 1 Available 00112625
Total holds: 0

Enhanced descriptions from Syndetics:

NMR spectroscopy is one of the most important and widely used techniques for the identification of compounds. Based on an established course this core text offers a truly modern and updated approach.

* Provides a comprehensive introduction to the subject

* Includes a multi-disciplinary approach, concentrating on basic principles and concepts

* Contains chapters of worked examples and problems to encourage a fuller understanding of topics

* Offers a pedagogical approach, starting with quarks and nucleons, and moving on to cover NMR imaging, COSY (Correlated Spectroscopy) and NOESY (Nuclear Overhauser Effect Spectroscopy).

As a core subject in many science disciplines, this text will appeal to a wide range of students, as well as practising scientists and technicians. Assuming only a basic knowledge of complex numbers and matrices, it carefully and lucidly aids readers to fully understand this challenging subject.

Includes bibliographical references and index.

Table of contents provided by Syndetics

  • Preface (p. xxi)
  • Introduction (p. 1)
  • Part 1 Nuclear Magnetism (p. 3)
  • 1 Matter (p. 5)
  • 1.1 Properties of Nuclei (p. 5)
  • 1.2 Spin (p. 6)
  • 1.3 Atomic and Molecular Structure (p. 10)
  • 1.4 States of Matter (p. 17)
  • Notes (p. 20)
  • Further Reading (p. 21)
  • Exercises (p. 21)
  • 2 Magnetism (p. 23)
  • 2.1 The Electromagnetic Field (p. 23)
  • 2.2 Macroscopic Magnetism (p. 23)
  • 2.3 Microscopic Magnetism (p. 25)
  • 2.4 Spin Precession (p. 27)
  • 2.5 Larmor Frequency (p. 30)
  • 2.6 Spin--Lattice Relaxation: Nuclear Paramagnetism (p. 32)
  • 2.7 Transverse Magnetization and Transverse Relaxation (p. 36)
  • 2.8 NMR Signal (p. 39)
  • 2.9 Electronic Magnetism (p. 39)
  • Notes (p. 41)
  • Further Reading (p. 41)
  • Exercises (p. 42)
  • 3 NMR Spectroscopy (p. 43)
  • 3.1 A Simple Pulse Sequence (p. 43)
  • 3.2 A Simple Spectrum (p. 43)
  • 3.3 Isotopomeric Spectra (p. 47)
  • 3.4 Relative Spectral Frequencies--Case of Positive Gamma (p. 49)
  • 3.5 Relative Spectral Frequencies--Case of Negative Gamma (p. 51)
  • 3.6 Inhomogeneous Broadening (p. 53)
  • 3.7 Chemical Shifts (p. 56)
  • 3.8 Multiplet Structure (p. 61)
  • 3.9 Heteronuclear Decoupling (p. 65)
  • Notes (p. 67)
  • Further Reading (p. 67)
  • Exercises (p. 67)
  • Part 2 The NMR Experiment (p. 69)
  • 4 The NMR Spectrometer (p. 71)
  • 4.1 The Magnet (p. 71)
  • 4.2 The Transmitter Section (p. 73)
  • 4.3 The Duplexer (p. 76)
  • 4.4 The Probe (p. 77)
  • 4.5 The Receiver Section (p. 80)
  • 4.6 Overview (p. 85)
  • Notes (p. 86)
  • Further Reading (p. 87)
  • 5 Fourier Transform NMR (p. 89)
  • 5.1 A Single-Pulse Experiment (p. 89)
  • 5.2 Signal Averaging (p. 90)
  • 5.3 Multiple-Pulse Experiments: Phase Cycling (p. 93)
  • 5.4 Heteronuclear Experiments (p. 95)
  • 5.5 Arrayed Experiments (p. 96)
  • 5.6 NMR Signal (p. 98)
  • 5.7 NMR Spectrum (p. 101)
  • 5.8 Two-dimensional Spectroscopy (p. 110)
  • 5.9 Three-dimensional Spectroscopy (p. 119)
  • Notes (p. 120)
  • Further Reading (p. 121)
  • Exercises (p. 122)
  • Part 3 Nuclear Spin Interactions (p. 125)
  • 6 Review of Quantum Mechanics (p. 127)
  • 6.1 Functions (p. 127)
  • 6.2 Operators (p. 131)
  • 6.3 Eigenfunctions and Eigenvalues (p. 138)
  • 6.4 Exponential Operators (p. 140)
  • 6.5 Cyclic Commutation (p. 143)
  • 6.6 Spinless Quantum Mechanics (p. 145)
  • 6.7 Energy Levels (p. 148)
  • 6.8 Natural Units (p. 149)
  • 6.9 Superposition States and Stationary States (p. 149)
  • 6.10 Conservation Laws (p. 150)
  • 6.11 Angular Momentum (p. 151)
  • 6.12 Spin (p. 160)
  • 6.13 Spin-1/2 (p. 163)
  • Notes (p. 166)
  • Further Reading (p. 166)
  • Exercises (p. 167)
  • 7 Nuclear Spin Hamiltonian (p. 169)
  • 7.1 Spin Hamiltonian Hypothesis (p. 169)
  • 7.2 Electromagnetic Interactions (p. 170)
  • 7.3 External and Internal Spin Interactions (p. 176)
  • 7.4 External Magnetic Fields (p. 176)
  • 7.5 Internal Spin Hamiltonian (p. 180)
  • 7.6 Motional Averaging (p. 184)
  • 7.7 Chemical Shift (p. 192)
  • 7.8 Electric Quadrupole Coupling (p. 201)
  • 7.9 Direct Dipole--Dipole Coupling (p. 203)
  • 7.10 J-Coupling (p. 211)
  • 7.11 Spin--Rotation Interaction (p. 216)
  • 7.12 Summary of the Spin Hamiltonian Terms (p. 217)
  • Notes (p. 218)
  • Further Reading (p. 219)
  • Exercises (p. 220)
  • 8 Spin Systems in Isotropic Liquids (p. 223)
  • 8.1 Molecular Spin System (p. 223)
  • 8.2 Spin Ensemble (p. 224)
  • 8.3 Motionally Suppressed J-couplings (p. 225)
  • 8.4 Chemical Equivalence (p. 226)
  • 8.5 Magnetic Equivalence (p. 229)
  • 8.6 Weak Coupling (p. 233)
  • 8.7 Heteronuclear Spin Systems (p. 234)
  • 8.8 Alphabet Notation (p. 235)
  • 8.9 Spin Coupling Topologies (p. 236)
  • Notes (p. 237)
  • Further Reading (p. 237)
  • Exercises (p. 237)
  • Part 4 Uncoupled Spins-1/2 (p. 239)
  • 9 Single Spin-1/2 (p. 241)
  • 9.1 Zeeman Eigenstates (p. 241)
  • 9.2 Measurement of Angular Momentum. Quantum Indeterminacy (p. 242)
  • 9.3 Energy Levels (p. 243)
  • 9.4 Superposition States (p. 244)
  • 9.5 Spin Precession (p. 248)
  • 9.6 Rotating Frame (p. 252)
  • 9.7 Precession in the Rotating Frame (p. 256)
  • 9.8 Radiofrequency Pulse (p. 258)
  • Notes (p. 269)
  • Further Reading (p. 270)
  • Exercises (p. 270)
  • 10 Ensemble of Spins-1/2 (p. 273)
  • 10.1 Spin Density Operator (p. 273)
  • 10.2 Populations and Coherences (p. 275)
  • 10.3 Thermal Equilibrium (p. 281)
  • 10.4 Rotating-Frame Density Operator (p. 284)
  • 10.5 Magnetization Vector (p. 285)
  • 10.6 Strong r.f. Pulse (p. 286)
  • 10.7 Free Precession Without Relaxation (p. 292)
  • 10.8 Operator Transformations (p. 295)
  • 10.9 Free Evolution with Relaxation (p. 298)
  • 10.10 Magnetization Vector Trajectories (p. 303)
  • 10.11 NMR Signal and NMR Spectrum (p. 305)
  • 10.12 Single-Pulse Spectra (p. 307)
  • Notes (p. 310)
  • Further Reading (p. 312)
  • Exercises (p. 312)
  • 11 Experiments on Non-Interacting Spins (p. 315)
  • 11.1 Inversion-Recovery: Measurement of T[subscript 1] (p. 315)
  • 11.2 Spin Echoes: Measurement of T[subscript 2] (p. 318)
  • 11.3 NMR Imaging (p. 325)
  • Notes (p. 334)
  • Further Reading (p. 335)
  • Exercises (p. 335)
  • Part 5 Coupled Spins-1/2 (p. 337)
  • 12 Homonuclear AX System (p. 339)
  • 12.1 Weakly Coupled Spin-Pair Hamiltonian (p. 340)
  • 12.2 Zeeman Product States and Superposition States (p. 341)
  • 12.3 Energy Levels (p. 342)
  • 12.4 Total Angular Momenta (p. 343)
  • 12.5 Density Operator (p. 344)
  • 12.6 Rotating Frame (p. 347)
  • 12.7 Free Evolution (p. 350)
  • 12.8 Spectrum of the AX System: Spin-Spin Splitting (p. 352)
  • 12.9 Product Operators (p. 355)
  • 12.10 Thermal Equilibrium (p. 364)
  • 12.11 Radiofrequency Pulses (p. 366)
  • 12.12 Free Evolution of the Product Operators (p. 373)
  • 12.13 Spin Echo Sandwich (p. 381)
  • Notes (p. 384)
  • Further Reading (p. 384)
  • Exercises (p. 384)
  • 13 Experiments on AX Systems (p. 387)
  • 13.1 COSY (p. 387)
  • 13.2 Inadequate (p. 399)
  • 13.3 INEPT (p. 416)
  • 13.4 AX Systems in Weakly Oriented Liquids (p. 425)
  • Notes (p. 431)
  • Further Reading (p. 432)
  • Exercises (p. 432)
  • 14 Multiple Spin-1/2 Systems (p. 435)
  • 14.1 Spin Hamiltonian (p. 435)
  • 14.2 Energy Eigenstates (p. 436)
  • 14.3 Superposition States (p. 438)
  • 14.4 Spin Density Operator (p. 438)
  • 14.5 Populations and Coherences (p. 439)
  • 14.6 NMR Spectra (p. 444)
  • 14.7 Multiple-Spin Product Operators (p. 446)
  • 14.8 Thermal Equilibrium (p. 450)
  • 14.9 Radiofrequency Pulses (p. 451)
  • 14.10 Free Precession (p. 451)
  • 14.11 Spin Echo Sandwiches (p. 455)
  • 14.12 INEPT in an I[subscript 2]S System (p. 457)
  • 14.13 COSY in Multiple-Spin Systems (p. 460)
  • 14.14 TOCSY (p. 467)
  • Notes (p. 474)
  • Further Reading (p. 475)
  • Exercises (p. 475)
  • Part 6 Motion and Relaxation (p. 477)
  • 15 Motion (p. 479)
  • 15.1 Motional Processes (p. 479)
  • 15.2 Motional Timescales (p. 485)
  • 15.3 Motional Effects (p. 486)
  • 15.4 Motional Averaging (p. 487)
  • 15.5 Motional Lineshapes and Two-Site Exchange (p. 488)
  • 15.6 Longitudinal Magnetization Exchange (p. 500)
  • Notes (p. 510)
  • Further Reading (p. 511)
  • Exercises (p. 511)
  • 16 Relaxation (p. 513)
  • 16.1 Types of Relaxation (p. 513)
  • 16.2 Relaxation Mechanisms (p. 514)
  • 16.3 Random Field Relaxation (p. 515)
  • 16.4 Dipole--Dipole Relaxation (p. 527)
  • 16.5 Steady-State Nuclear Overhauser Effect (p. 538)
  • 16.6 NOESY (p. 543)
  • 16.7 ROESY (p. 550)
  • 16.8 Cross-Correlated Relaxation (p. 557)
  • Notes (p. 568)
  • Further Reading (p. 569)
  • Exercises (p. 570)
  • Part 7 Appendices, Symbols and Answers to Exercises (p. 571)
  • 17 Appendices (p. 573)
  • 17.1 Rotations and Cyclic Commutation (p. 573)
  • 17.2 Rotation Sandwiches (p. 575)
  • 17.3 Spin-1/2 Rotation Operators (p. 576)
  • 17.4 Full Quadrupolar Interaction (p. 577)
  • 17.5 Secular Approximation (p. 578)
  • 17.6 J-Couplings and Magnetic Equivalence (p. 583)
  • 17.7 Quadrature Detection and Spin Coherences (p. 585)
  • 17.8 Strong Coupling (p. 588)
  • 17.9 Spin Echo Sandwiches (p. 594)
  • 17.10 Phase Cycling (p. 600)
  • 17.11 Bloch Equations (p. 626)
  • 17.12 Chemical Exchange (p. 627)
  • 17.13 Solomon Equations (p. 633)
  • 17.14 Cross-Relaxation Dynamics (p. 635)
  • Notes (p. 636)
  • Further Reading (p. 636)
  • List of Symbols (p. 639)
  • Answers to the Exercises (p. 657)
  • Index (p. 669)

Powered by Koha