MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Introduction to the theory of ferromagnetism / Amikam Aharoni.

By: Aharoni, Amikam.
Material type: materialTypeLabelBookSeries: International series of monographs of physics ; 93.Publisher: Oxford : Oxford University Press, 1996Description: xi, 315 p. : ill. ; 24 cm. + hbk.ISBN: 0198517912 .Subject(s): FerromagnetismDDC classification: 538.44
Contents:
Introduction -- Molecular field approximation -- The Heisenberg hamiltonian -- Magnetization vs temperature -- Anistropy and time effects -- Another energy term -- Basic micromagnetics -- Energy minimization -- The nucleation problem -- Analytic micromagnetics -- Numerical micromagnetics.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 538.44 (Browse shelf(Opens below)) 1 Available 00070620
Total holds: 0

Enhanced descriptions from Syndetics:

This introductory textbook explains the basic theoretical principles of magnetism, providing a broad coverage of the subject and indicating directions of future research. While the book is meant primarily as a textbook for first-year graduate students and advanced undergraduates in physics and engineering, it can also be a reference for practicing engineers and physicists who work in the field of magnetism. It explains the basic theoretical principles on which much of this type of research is based, with special attention to some of the shortcomings and drawbacks. The book emphasizes the foundations of different subfields, but also explores the directions of the most recent research.

Bibliography: p. 266-299. - Includes index.

Introduction -- Molecular field approximation -- The Heisenberg hamiltonian -- Magnetization vs temperature -- Anistropy and time effects -- Another energy term -- Basic micromagnetics -- Energy minimization -- The nucleation problem -- Analytic micromagnetics -- Numerical micromagnetics.

Table of contents provided by Syndetics

  • 1 Introduction (p. 1)
  • 1.1 Nomenclature (p. 1)
  • 1.2 Weiss Domains (p. 3)
  • 1.3 The Bohr-van Leeuwen Theorem (p. 6)
  • 1.4 Diamagnetism (p. 8)
  • 2 Molecular Field Approximation (p. 12)
  • 2.1 Paramagnetism (p. 12)
  • 2.2 Ferromagnetism (p. 16)
  • 2.3 Antiferromagnetism (p. 20)
  • 2.4 The Curie-Weiss Law (p. 22)
  • 2.5 Ferrimagnetism (p. 27)
  • 2.6 Other Cases (p. 32)
  • 3 The Heisenberg Hamiltonian (p. 35)
  • 3.1 Spin and Orbit (p. 35)
  • 3.2 Exchange Interaction (p. 36)
  • 3.3 Exchange Integrals (p. 43)
  • 3.4 Delocalized Electrons (p. 44)
  • 3.5 Spin Waves (p. 48)
  • 4 Magnetization vs. Temperature (p. 60)
  • 4.1 Magnetic Domains (p. 60)
  • 4.2 The Landau Theory (p. 63)
  • 4.3 Critical Exponents (p. 66)
  • 4.4 Ising Model (p. 70)
  • 4.5 Low Dimensionality (p. 76)
  • 4.6 Arrott Plots (p. 80)
  • 5 Anisotropy and Time Effects (p. 83)
  • 5.1 Anisotropy (p. 83)
  • 5.1.1 Uniaxial Anisotropy (p. 85)
  • 5.1.2 Cubic Anisotropy (p. 86)
  • 5.1.3 Magnetostriction (p. 87)
  • 5.1.4 Other Cases (p. 88)
  • 5.1.5 Surface Anisotropy (p. 89)
  • 5.1.6 Experimental Methods (p. 90)
  • 5.2 Superparamagnetism (p. 92)
  • 5.3 Magnetic Viscosity (p. 100)
  • 5.4 The Stoner-Wohlfarth Model (p. 105)
  • 6 Another Energy Term (p. 109)
  • 6.1 Basic Magnetostatics (p. 109)
  • 6.1.1 Uniqueness (p. 111)
  • 6.1.2 Trivial Examples (p. 112)
  • 6.1.3 Uniformly Magnetized Ellipsoid (p. 114)
  • 6.2 Origin of Domains (p. 116)
  • 6.2.1 Domain Wall (p. 120)
  • 6.2.2 Long and Short Range (p. 122)
  • 6.3 Magnetic Charge (p. 125)
  • 6.3.1 General Demagnetization (p. 128)
  • 6.4 Units (p. 131)
  • 7 Basic Micromagnetics (p. 133)
  • 7.1 'Classical' Exchange (p. 133)
  • 7.2 The Landau and Lifshitz Wall (p. 138)
  • 7.3 Magnetostatic Energy (p. 141)
  • 7.3.1 Physically Small Sphere (p. 142)
  • 7.3.2 Pole Avoidance Principle (p. 145)
  • 7.3.3 Reciprocity (p. 148)
  • 7.3.4 Upper and Lower Bounds (p. 149)
  • 7.3.5 Planar Rectangle (p. 152)
  • 8 Energy Minimization (p. 157)
  • 8.1 Bloch and Neel Walls (p. 157)
  • 8.2 Two-dimensional Walls (p. 165)
  • 8.2.1 Bulk Materials (p. 171)
  • 8.3 Brown's Static Equations (p. 173)
  • 8.4 Self-consistency (p. 179)
  • 8.5 The Dynamic Equation (p. 181)
  • 9 The Nucleation Problem (p. 183)
  • 9.1 Definition (p. 183)
  • 9.2 Two Eigenmodes (p. 188)
  • 9.2.1 Coherent Rotation (p. 188)
  • 9.2.2 Magnetization Curling (p. 189)
  • 9.3 Infinite Slab (p. 194)
  • 9.4 The Third Mode (p. 200)
  • 9.5 Brown's Paradox (p. 204)
  • 9.5.1 Hard Materials (p. 207)
  • 9.5.2 Soft Materials (p. 209)
  • 9.5.3 Small Particles (p. 212)
  • 10 Analytic Micromagnetics (p. 215)
  • 10.1 Ferromagnetic Resonance (p. 215)
  • 10.2 First Integral (p. 217)
  • 10.3 Boundary Conditions (p. 221)
  • 10.4 Wall Mass (p. 222)
  • 10.5 The Remanent State (p. 225)
  • 10.5.1 Sphere (p. 226)
  • 10.5.2 Prolate Spheroid (p. 231)
  • 10.5.3 Cube (p. 232)
  • 11 Numerical Micromagnetics (p. 238)
  • 11.1 Magnetostatic Energy (p. 238)
  • 11.2 Energy Minimization (p. 243)
  • 11.3 Computational Results (p. 250)
  • 11.3.1 Domain Walls (p. 250)
  • 11.3.2 Sphere (p. 252)
  • 11.3.3 Prolate Spheroid (p. 255)
  • 11.3.4 Thin Films (p. 256)
  • 11.3.5 Prism (p. 260)
  • 11.3.6 Cylinder (p. 266)
  • References (p. 268)
  • Author Index (p. 305)
  • Subject Index (p. 315)

Author notes provided by Syndetics

Amikam Aharoni is The Richard Kronstein Professor of Theoretical Magnetism Emeritus, Weizmann Institute of Science, Rehovoth, Israel

Powered by Koha