MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Applications of nonlinear fiber optics / Govind P. Agrawal.

By: Agrawal, G. P. (Govind P.), 1951-.
Material type: materialTypeLabelBookSeries: Optics and photonics.Publisher: San Diego : Academic Press, c2001Description: xiv, 458 p. : ill. ; 24 cm. + hbk.ISBN: 0120451441.Subject(s): Fiber optics | Nonlinear opticsDDC classification: 621.3692
Contents:
Fiber gratings -- Fiber couplers -- Fiber interferometers -- Fiber amplifiers -- Fiber lasers -- Pulse compression -- Fiber-optic communications -- Soliton lightwave systems.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 621.3692 (Browse shelf(Opens below)) 1 Available 00092247
Total holds: 0

Enhanced descriptions from Syndetics:

Applications of Nonlinear Fiber Optics provides comprehensive and up-to-date coverage of the applications of nonlinear optical effects occurring inside optical fibers. Topics covered include fiber gratings, fiber couplers, different types of interferometers, fiber amplifier and lasers. Particular attention is paid to optical applications related to compression of optical pulses and design of fiber-optic communication systems.

Includes bibliographical references and index.

Fiber gratings -- Fiber couplers -- Fiber interferometers -- Fiber amplifiers -- Fiber lasers -- Pulse compression -- Fiber-optic communications -- Soliton lightwave systems.

Table of contents provided by Syndetics

  • Preface (p. xiii)
  • 1 Fiber Gratings (p. 1)
  • 1.1 Basic Concepts (p. 1)
  • 1.1.1 Bragg Diffraction (p. 2)
  • 1.1.2 Photosensitivity (p. 3)
  • 1.2 Fabrication Techniques (p. 5)
  • 1.2.1 Single-Beam Internal Technique (p. 5)
  • 1.2.2 Dual-Beam Holographic Technique (p. 6)
  • 1.2.3 Phase Mask Technique (p. 8)
  • 1.2.4 Point-by-Point Fabrication Technique (p. 10)
  • 1.3 Grating Characteristics (p. 11)
  • 1.3.1 Coupled-Mode Equations (p. 11)
  • 1.3.2 CW Solution in the Linear Case (p. 14)
  • 1.3.3 Photonic Bandgap, or Stop Band (p. 15)
  • 1.3.4 Grating as an Optical Filter (p. 17)
  • 1.3.5 Experimental Verification (p. 20)
  • 1.4 CW Nonlinear Effects (p. 22)
  • 1.4.1 Nonlinear Dispersion Curves (p. 23)
  • 1.4.2 Optical Bistability (p. 25)
  • 1.5 Modulation Instability (p. 27)
  • 1.5.1 Linear Stability Analysis (p. 28)
  • 1.5.2 Effective NLS Equation (p. 30)
  • 1.5.3 Experimental Results (p. 32)
  • 1.6 Nonlinear Pulse Propagation (p. 33)
  • 1.6.1 Bragg Solitons (p. 34)
  • 1.6.2 Relation to NLS Solitons (p. 35)
  • 1.6.3 Formation of Bragg Solitons (p. 36)
  • 1.6.4 Nonlinear Switching (p. 40)
  • 1.6.5 Effects of Birefringence (p. 42)
  • 1.7 Related Periodic Structures (p. 44)
  • 1.7.1 Long-Period Gratings (p. 45)
  • 1.7.2 Nonuniform Bragg Gratings (p. 47)
  • 1.7.3 Photonic-Crystal Fibers (p. 51)
  • Problems (p. 54)
  • References (p. 55)
  • 2 Fiber Couplers (p. 62)
  • 2.1 Coupler Characteristics (p. 62)
  • 2.1.1 Coupled-Mode Equations (p. 63)
  • 2.1.2 Low-Power Optical Beams (p. 66)
  • 2.1.3 Linear Pulse Switching (p. 70)
  • 2.2 Nonlinear Effects (p. 71)
  • 2.2.1 Quasi-CW Switching (p. 72)
  • 2.2.2 Experimental Results (p. 74)
  • 2.2.3 Nonlinear Supermodes (p. 77)
  • 2.2.4 Modulation Instability (p. 79)
  • 2.3 Ultrashort Pulse Propagation (p. 83)
  • 2.3.1 Nonlinear Switching of Optical Pulses (p. 83)
  • 2.3.2 Variational Approach (p. 85)
  • 2.4 Coupler-Paired Solitons (p. 89)
  • 2.5 Extensions and Applications (p. 93)
  • 2.5.1 Asymmetric Couplers (p. 93)
  • 2.5.2 Active Couplers (p. 96)
  • 2.5.3 Grating-Assisted Couplers (p. 98)
  • 2.5.4 Birefringent Couplers (p. 101)
  • 2.5.5 Multicore Couplers (p. 102)
  • Problems (p. 105)
  • References (p. 106)
  • 3 Fiber Interferometers (p. 112)
  • 3.1 Fabry-Perot and Ring Resonators (p. 112)
  • 3.1.1 Transmission Resonances (p. 113)
  • 3.1.2 Optical Bistability (p. 116)
  • 3.1.3 Nonlinear Dynamics and Chaos (p. 118)
  • 3.1.4 Modulation Instability (p. 120)
  • 3.1.5 Ultrafast Nonlinear Effects (p. 122)
  • 3.2 Sagnac Interferometers (p. 124)
  • 3.2.1 Nonlinear Transmission (p. 125)
  • 3.2.2 Nonlinear Switching (p. 126)
  • 3.2.3 Applications (p. 131)
  • 3.3 Mach-Zehnder Interferometers (p. 138)
  • 3.3.1 Nonlinear Characteristics (p. 139)
  • 3.3.2 Applications (p. 141)
  • 3.4 Michelson Interferometers (p. 142)
  • Problems (p. 144)
  • References (p. 145)
  • 4 Fiber Amplifiers (p. 151)
  • 4.1 Basic Concepts (p. 151)
  • 4.1.1 Pumping and Gain Coefficient (p. 152)
  • 4.1.2 Amplifier Gain and Bandwidth (p. 153)
  • 4.1.3 Amplifier Noise (p. 156)
  • 4.2 Erbium-Doped Fiber Amplifiers (p. 158)
  • 4.2.1 Gain Spectrum (p. 159)
  • 4.2.2 Amplifier Gain (p. 161)
  • 4.2.3 Amplifier Noise (p. 164)
  • 4.3 Dispersive and Nonlinear Effects (p. 166)
  • 4.3.1 Maxwell-Bloch Equations (p. 166)
  • 4.3.2 Ginzburg-Landau Equation (p. 168)
  • 4.4 Modulation Instability (p. 171)
  • 4.4.1 Distributed Amplification (p. 171)
  • 4.4.2 Periodic Lumped Amplification (p. 173)
  • 4.4.3 Noise Amplification (p. 174)
  • 4.5 Optical Solitons (p. 177)
  • 4.5.1 Autosolitons (p. 177)
  • 4.5.2 Maxwell-Bloch Solitons (p. 181)
  • 4.6 Pulse Amplification (p. 184)
  • 4.6.1 Picosecond Pulses (p. 184)
  • 4.6.2 Ultrashort Pulses (p. 189)
  • Problems (p. 193)
  • References (p. 194)
  • 5 Fiber Lasers (p. 201)
  • 5.1 Basic Concepts (p. 201)
  • 5.1.1 Pumping and Optical Gain (p. 202)
  • 5.1.2 Cavity Design (p. 203)
  • 5.1.3 Laser Threshold and Output Power (p. 206)
  • 5.2 CW Fiber Lasers (p. 208)
  • 5.2.1 Nd-Doped Fiber Lasers (p. 208)
  • 5.2.2 Erbium-Doped Fiber Lasers (p. 211)
  • 5.2.3 Other Fiber Lasers (p. 215)
  • 5.2.4 Self-Pulsing and Chaos (p. 216)
  • 5.3 Short-Pulse Fiber Lasers (p. 218)
  • 5.3.1 Physics of Mode Locking (p. 219)
  • 5.3.2 Active Mode Locking (p. 220)
  • 5.3.3 Harmonic Mode Locking (p. 223)
  • 5.3.4 Other Techniques (p. 227)
  • 5.4 Passive Mode Locking (p. 229)
  • 5.4.1 Saturable Absorbers (p. 229)
  • 5.4.2 Nonlinear Fiber-Loop Mirrors (p. 232)
  • 5.4.3 Nonlinear Polarization Rotation (p. 236)
  • 5.4.4 Hybrid Mode Locking (p. 238)
  • 5.4.5 Other Mode-Locking Techniques (p. 240)
  • 5.5 Role of Fiber Nonlinearity and Dispersion (p. 241)
  • 5.5.1 Saturable-Absorber Mode Locking (p. 241)
  • 5.5.2 Additive-Pulse Mode Locking (p. 243)
  • 5.5.3 Spectral Sidebands (p. 244)
  • 5.5.4 Polarization Effects (p. 247)
  • Problems (p. 249)
  • References (p. 250)
  • 6 Pulse Compression (p. 263)
  • 6.1 Physical Mechanism (p. 263)
  • 6.2 Grating-Fiber Compressors (p. 266)
  • 6.2.1 Grating Pair (p. 266)
  • 6.2.2 Optimum Compressor Design (p. 269)
  • 6.2.3 Practical Limitations (p. 273)
  • 6.2.4 Experimental Results (p. 275)
  • 6.3 Soliton-Effect Compressors (p. 280)
  • 6.3.1 Compressor Optimization (p. 281)
  • 6.3.2 Experimental Results (p. 283)
  • 6.3.3 Higher-Order Nonlinear Effects (p. 285)
  • 6.4 Fiber Bragg Gratings (p. 287)
  • 6.4.1 Gratings as a Compact Dispersive Element (p. 287)
  • 6.4.2 Grating-Induced Nonlinear Chirp (p. 289)
  • 6.4.3 Bragg-Soliton Compression (p. 291)
  • 6.5 Chirped-Pulse Amplification (p. 292)
  • 6.6 Dispersion-Decreasing Fibers (p. 294)
  • 6.6.1 Compression Mechanism (p. 295)
  • 6.6.2 Experimental Results (p. 296)
  • 6.7 Other Compression Techniques (p. 299)
  • 6.7.1 Cross-Phase Modulation (p. 299)
  • 6.7.2 Gain-Switched Semiconductor Lasers (p. 303)
  • 6.7.3 Optical Amplifiers (p. 305)
  • 6.7.4 Fiber Couplers and Interferometers (p. 307)
  • Problems (p. 308)
  • References (p. 309)
  • 7 Fiber-Optic Communications (p. 319)
  • 7.1 System Basics (p. 319)
  • 7.1.1 Loss Management (p. 320)
  • 7.1.2 Dispersion Management (p. 323)
  • 7.2 Stimulated Brillouin Scattering (p. 326)
  • 7.2.1 Brillouin Threshold (p. 326)
  • 7.2.2 Control of SBS (p. 328)
  • 7.3 Stimulated Raman Scattering (p. 330)
  • 7.3.1 Raman Crosstalk (p. 330)
  • 7.3.2 Power Penalty (p. 332)
  • 7.4 Self-Phase Modulation (p. 335)
  • 7.4.1 SPM-Induced Frequency Chirp (p. 335)
  • 7.4.2 Loss and Dispersion Management (p. 338)
  • 7.5 Cross-Phase Modulation (p. 340)
  • 7.5.1 XPM-Induced Phase Shift (p. 340)
  • 7.5.2 Power Penalty (p. 342)
  • 7.6 Four-Wave Mixing (p. 344)
  • 7.6.1 FWM Efficiency (p. 345)
  • 7.6.2 FWM-Induced Crosstalk (p. 346)
  • 7.7 System Design (p. 349)
  • 7.7.1 Numerical Modeling (p. 349)
  • 7.7.2 Design Issues (p. 352)
  • 7.7.3 System Performance (p. 355)
  • Problems (p. 359)
  • References (p. 360)
  • 8 Soliton Lightwave Systems (p. 367)
  • 8.1 Basic Concepts (p. 367)
  • 8.1.1 Properties of Solitons (p. 368)
  • 8.1.2 Soliton Bit Stream (p. 371)
  • 8.1.3 Soliton Interaction (p. 373)
  • 8.1.4 Effect of Fiber Loss (p. 375)
  • 8.2 Loss-Managed Solitons (p. 376)
  • 8.2.1 Lumped Amplification (p. 377)
  • 8.2.2 Distributed Amplification (p. 379)
  • 8.2.3 Chirped Solitons (p. 384)
  • 8.3 Amplifier Noise (p. 386)
  • 8.3.1 ASE-Induced Fluctuations (p. 386)
  • 8.3.2 Timing Jitter (p. 388)
  • 8.3.3 Control of Timing Jitter (p. 391)
  • 8.3.4 Experimental Results (p. 400)
  • 8.4 Dispersion-Managed Solitons (p. 401)
  • 8.4.1 Dispersion-Decreasing Fibers (p. 401)
  • 8.4.2 Periodic Dispersion Maps (p. 407)
  • 8.5 WDM Soliton Systems (p. 417)
  • 8.5.1 Interchannel Collisions (p. 417)
  • 8.5.2 Effect of Lumped Amplification (p. 420)
  • 8.5.3 Timing Jitter (p. 421)
  • 8.5.4 Dispersion Management (p. 423)
  • Problems (p. 427)
  • References (p. 429)
  • Appendix A Bit-Error Rate (p. 439)
  • Appendix B Acronyms (p. 442)
  • Index (p. 445)

Powered by Koha