MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Semiconductor surfaces and interfaces / Winfried Monch.

By: Mönch, Winfried.
Material type: materialTypeLabelBookSeries: Springer series in surface sciences ; 26.Publisher: Berlin : Springer-Verlag, 1993Description: xiii, 366 p. : ill. ; 24 cm. + pbk.ISBN: 3540544232 ; 0387544232 .Subject(s): Semiconductors -- Surfaces | Semiconductors -- Junctions | Surface chemistryDDC classification: 537.622
Contents:
Introduction -- Surface space charge region in thermal equilibrium -- Surface states -- Occupation of surface states and surface band bending in thermal equilibrium -- Surface space charge region in non equilibrium -- Interface states -- Cleaved (110) surfaces ofIII-V and II-VI compound semiconductors -- (100) surfaces of III-V, II-VI and I-VII compound semiconductors with zincblende structure -- (100) surfaces of silicon, germanium and cubic silicon carbide -- Diamond, silicon and germanium (111)-2X1 surfaces -- Si(111)7x7 and ge(111)-c(2x8) surfaces -- Phase transitions on silicon and germanium (111) surfaces -- (111) surfaces of compounds with zincblende structure -- Monovalent adatoms -- Group III adatoms on silicon surfaces -- Group V adatoms -- Oxidation of silicon and III-V compound semiconductors -- Surface passivation by adsorbates and surfactants -- Semiconductor interfaces.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 537.622 (Browse shelf(Opens below)) 1 Available 00009639
Total holds: 0

Enhanced descriptions from Syndetics:

This third edition has been thoroughly revised and updated. In particular it now includes an extensive discussion of the band lineup at semiconductor interfaces. The unifying concept is the continuum of interface-induced gap states.

Includes bibliographical references (p. 335-357) and indexes.

Introduction -- Surface space charge region in thermal equilibrium -- Surface states -- Occupation of surface states and surface band bending in thermal equilibrium -- Surface space charge region in non equilibrium -- Interface states -- Cleaved (110) surfaces ofIII-V and II-VI compound semiconductors -- (100) surfaces of III-V, II-VI and I-VII compound semiconductors with zincblende structure -- (100) surfaces of silicon, germanium and cubic silicon carbide -- Diamond, silicon and germanium (111)-2X1 surfaces -- Si(111)7x7 and ge(111)-c(2x8) surfaces -- Phase transitions on silicon and germanium (111) surfaces -- (111) surfaces of compounds with zincblende structure -- Monovalent adatoms -- Group III adatoms on silicon surfaces -- Group V adatoms -- Oxidation of silicon and III-V compound semiconductors -- Surface passivation by adsorbates and surfactants -- Semiconductor interfaces.

Table of contents provided by Syndetics

  • 1 Introduction (p. 1)
  • 1.1 Historical Remarks (p. 1)
  • 1.2 Surface Space-Charge and Surface States: Some Preliminary Remarks (p. 13)
  • 2 Surface Space-Charge Region in Thermal Equilibrium (p. 21)
  • 2.1 Solutions of Poisson's Equation (p. 21)
  • 2.2 Surface Space-Charge (p. 25)
  • 2.3 Shape of Surface Barriers (p. 27)
  • 2.4 Comparison of Space-Charge Layers at Semiconductor and Metal Surfaces (p. 28)
  • 2.5 Quantum Size-Effects in Space-Charge Layers (p. 28)
  • 3 Surface States (p. 33)
  • 3.1 Virtual Gap States of the Complex Band Structure (p. 33)
  • 3.2 Intrinsic Surface States: Nearly Free Electron Model (p. 36)
  • 3.3 Intrinsic Surface States: Tight-Binding Approximation (p. 44)
  • 3.4 Dangling Bonds (p. 47)
  • 3.5 Adatom-Induced Surface States: Tight-Binding Approach (p. 51)
  • 3.6 Adatom-Induced Surface Dipoles: Electronegativity Concept (p. 53)
  • 3.7 Adatom-Induced Surface States and Dipoles: ViGS Model (p. 56)
  • 4 Occupation of Surface States and Surface Band-Bending in Thermal Equilibrium (p. 59)
  • 5 Surface Space-Charge Region in Non-Equilibrium (p. 67)
  • 5.1 Surface Photovoltage (p. 67)
  • 5.2 Dember Effect (p. 73)
  • 5.3 Surface Transport (p. 74)
  • 5.3.1 Surface Excess of Carriers (p. 74)
  • 5.3.2 Surface Conductance (p. 76)
  • 5.3.3 Surface Mobility (p. 76)
  • 5.3.4 Field Effect of Surface Conductance (p. 78)
  • 6 Interface States (p. 81)
  • 6.1 Metal-Semiconductor Contacts: Metal-Induced Gap States (p. 81)
  • 6.2 MIGS-and-Electronegativity Model of Metal-Semiconductor Contacts (p. 86)
  • 6.3 Slope Parameters of Barrier Heights in Schottky Contacts (p. 91)
  • 6.4 Defects at Metal-Semiconductor Interfaces (p. 93)
  • 6.5 Band Lineup in Semiconductor Heterostructures: IFIGS-and-Electronegativity Model (p. 96)
  • 6.6 Band Lineup at Semiconductor Heterostructures: Tight-Binding Approach (p. 98)
  • 6.7 Historical Notes (p. 100)
  • 7 Cleaved {{110}} Surfaces of III-V and II-VI Compound Semiconductors (p. 105)
  • 7.1 Ionicity and Core-Level Spectroscopy of Compound Semiconductors (p. 105)
  • 7.1.1 Layer Model of Photoemitted Electrons (p. 105)
  • 7.1.2 Charge Transfer in the Bulk of Compound Semiconductors (p. 109)
  • 7.2 Surface Core-Level Shifts (p. 112)
  • 7.3 Geometrical Surface Structure (p. 114)
  • 7.4 Surface Phonons (p. 122)
  • 7.5 Electronic Surface States (p. 128)
  • 7.5.1 Intrinsic Versus Extrinsic Surface States (p. 128)
  • 7.5.2 Cleavage-Induced Surface States: InAs(110) as an Example (p. 131)
  • 7.5.3 Intrinsic Surface States (p. 133)
  • 7.6 Temperature Dependence of the Ionization Energy (p. 137)
  • 7.7 Chemical Trends of the Ionization Energy (p. 140)
  • 8 {{100}} Surfaces of III-V, II-VI, and I-VII Compound Semiconductors with Zincblende Structure (p. 145)
  • 8.1 Reconstructions and Trends in Chemical Compositions (p. 145)
  • 8.2 Dimerization (p. 150)
  • 8.3 Missing Dimer Structures (p. 153)
  • 8.4 Dimerization, Occupation of Dangling Bonds, and Electron Counting (p. 161)
  • 8.5 Intrinsic Surface Band Structure (p. 166)
  • 8.6 Fermi-Level Pinning by Extrinsic Surface States (p. 167)
  • 8.7 Ionization Energy (p. 168)
  • 9 {{100}} Surfaces of Diamond, Silicon, Germanium, and Cubic Silicon Carbide (p. 169)
  • 9.1 Atomic Arrangement (p. 169)
  • 9.2 Strain Effects on Si(001) Surfaces (p. 175)
  • 9.3 Electronic Surface Properties (p. 177)
  • 9.4 Surface Core-Level Shifts (p. 181)
  • 9.5 Reversible 2 \times 1 \rightleftharpoons {{\rm c}} (4 \times 2) Surface Phase Transition (p. 183)
  • 9.6 ß-SiC(001) Surfaces (p. 186)
  • 10 Diamond, Silicon, and Germanium {{111}}-2 × 1 Surfaces (p. 193)
  • 10.1 Cleaved Silicon and Germanium Surfaces (p. 194)
  • 10.1.1 Early Models of (111)-2 × 1 Reconstructions and Core-Level Shifts (p. 194)
  • 10.1.2 Band Structure of Dangling-Bond Surface States: Experimental Data (p. 197)
  • 10.1.3 Surface Band Gap (p. 202)
  • 10.1.4 Tilted Chains (p. 206)
  • 10.1.5 Band Structure of Dangling-Bond Surface States: Theoretical Results (p. 213)
  • 10.2 Clean Diamond {{111}} Surfaces (p. 213)
  • 10.2.1 Atomic Arrangement (p. 213)
  • 10.2.2 Electronic Properties (p. 215)
  • 10.3 Clean Diamond and Cleaved Silicon and Germanium {{111}} Surfaces in Comparison (p. 217)
  • 11 Si(111)-7 × 7 and Ge(111)-c(2 × 8) Surfaces (p. 219)
  • 11.1 Preparation of Clean Si(111)-7 × 7 and Ge(111)-c(2 × 8) Surfaces (p. 219)
  • 11.2 Si(111)-7 × 7: Atomic Arrangement (p. 221)
  • 11.2.1 Elements of the 7 × 7 Reconstruction on Si(111) Surfaces (p. 221)
  • 11.2.2 Dimer-Adatom-Stacking Fault Model (p. 225)
  • 11.3 Ge(111)-c(2 × 8): Atomic Arrangement (p. 229)
  • 11.4 Electronic Structure of Si(111)-7 × 7 and Ge(111)-c(2 × 8) Surfaces (p. 232)
  • 11.4.1 Electronic Band Structure (p. 232)
  • 11.4.2 Core-Level Spectroscopy (p. 234)
  • 11.5 Energetics of Reconstructions on {{111}} Surfaces of Si and Ge: 7 × 7 Versus c(2 × 8) (p. 237)
  • 12 Phase Transitions on Silicon and Germanium {{111}} Surfaces (p. 241)
  • 12.1 {{\rm Si}}(111)-7 \times 7 \rightleftharpoons "1 \times 1" and {{\rm Ge}}(111)-{{\rm c}}(2 \times 8) \rightleftharpoons "1 \times 1" Phase Transitions (p. 241)
  • 12.2 Ge(111)-"1 × 1" High-Temperature Phase Transition (p. 246)
  • 12.3 Irreversible Conversion of 2 × 1 Reconstructions on Cleaved Si and Ge Surfaces (p. 247)
  • 13 {{111}} Surfaces of Compounds with Zincblende Structure (p. 255)
  • 13.1 [111]-Oriented Surfaces (p. 255)
  • 13.2 \overline {{[111]}} -Oriented Surfaces (p. 257)
  • 14 Monovalent Adatoms (p. 263)
  • 14.1 Adsorption of Halogens (p. 263)
  • 14.1.1 Dissociative Adsorption (p. 263)
  • 14.1.2 Bond Lengths and Adsorption Sites (p. 269)
  • 14.2 Adsorption of Hydrogen (p. 272)
  • 14.2.1 Si(001):H Surfaces (p. 272)
  • 14.2.2 Si(111):H-¿(7 × 7) Surfaces (p. 275)
  • 14.2.3 Si(111)- and Ge(111):H-1 × 1 Surfaces (p. 276)
  • 14.3 Alkali and Silver Adatoms on Si{{100}} Surfaces (p. 280)
  • 14.4 Monovalent Metal Adatoms on Si and Ge {{111}} Surfaces (p. 283)
  • 14.4.1 Alkali Adatoms on Si(111)-7 × 7 Surfaces (p. 283)
  • 14.4.2 Si(111):Ag- and Ge(111): {{\rm Ag}}-(\sqrt {{3}} \times \sqrt {{3}}) R30° Structures (p. 284)
  • 14.4.3 Si(111):Au- and Ge(111): {{\rm Au}}-(\sqrt {{3}} \times \sqrt {{3}}) R30° Structures (p. 287)
  • 14.4.4 3 × 1 Reconstructions Induced by Alkali and Silver Adatoms on Si (111) Surfaces (p. 288)
  • 14.5 Growth Kinetics of Metals on Cleaved GaAs(110) Surfaces (p. 291)
  • 14.6 Adatom-Induced Surface Core-Level Shifts (p. 300)
  • 14.7 Adatom-Induced Surface Dipoles (p. 307)
  • 14.7.1 Mutual Interactions in Plane Arrays of Surface Dipoles (p. 307)
  • 14.7.2 Surface Dipoles Induced by Alkali Adatoms (p. 309)
  • 14.7.3 Hydrogen-Induced Surface Dipoles (p. 311)
  • 14.8 Adatom-Induced Surface States (p. 316)
  • 14.8.1 Cesium Adatoms on Cleaved Si Surfaces (p. 316)
  • 14.8.2 Metal Adatoms on GaAs(110) Surfaces (p. 317)
  • 14.8.3 Nonmetal Adatoms on GaAs(110) Surfaces (p. 324)
  • 15 Group-III Adatoms on Silicon Surfaces (p. 329)
  • 15.1 Si(111):III-( \sqrt {{3}} \times \sqrt {{3}} )R30° Reconstructions (p. 329)
  • 15.1.1 Al-, Ga-, and In-Induced ( \sqrt {{3}} \times \sqrt {{3}} )R30° Reconstructions (p. 330)
  • 15.1.2 B-Induced (\sqrt {{3}} \times \sqrt {{3}} )R30° Reconstruction (p. 333)
  • 15.2 Reconstructions Induced by Group-III Adatoms on {{100}} Surfaces of Si and Ge (p. 334)
  • 16 Group-V Adatoms (p. 339)
  • 16.1 Si(111):As-1 × 1 and Si(001):As- and Si(001):Sb-2 × 1 Surfaces (p. 339)
  • 16.2 Sb- and Bi-induced ( \sqrt {{3}} \times \sqrt {{3}} )R30° Structures on Si and Ge(111) Surfaces (p. 343)
  • 16.3 GaP-, GaAs-, and InP(110):Sb-1 × 1 Surfaces (p. 347)
  • 16.4 III-V(110):Bi-1 × 1 Surfaces (p. 350)
  • 17 Oxidation of Silicon and III-V Compound Semiconductors (p. 353)
  • 17.1 Si111 Surfaces (p. 353)
  • 17.1.1 Precursor-Mediated Chemisorption on Si(111)-7 × 7 Surfaces (p. 354)
  • 17.1.2 Oxygen-Induced Si(2p) Core-Level Shifts (p. 361)
  • 17.1.3 Field-Assisted Oxidation (p. 364)
  • 17.2 III-V Compound Semiconductors (p. 366)
  • 17.2.1 Oxidation Kinetics on GaAs(110) Surfaces (p. 367)
  • 17.2.2 Photon-Stimulated Oxidation (p. 371)
  • 17.2.3 Core-Level Spectroscopy: Growth Mode and Composition of Oxide Films (p. 372)
  • 18 Surface Passivation by Adsorbates and Surfactants (p. 377)
  • 18.1 Surface Passivation by Hydrogen (p. 377)
  • 18.2 Surfactant-Mediated Growth (p. 381)
  • 19 Semiconductor Interfaces (p. 385)
  • 19.1 Metal-Semiconductor Contacts (p. 386)
  • 19.1.1 Current Transport Across Metal-Semiconductor Contacts (p. 386)
  • 19.1.2 Image-Force Effect (p. 388)
  • 19.1.3 Determination of Barrier Heights: A Brief Comparison of Methods (p. 389)
  • 19.1.4 Barrier Heights of Real Schottky Contacts (p. 392)
  • 19.1.5 Laterally Inhomogeneous Schottky Contacts 1: Circular Patches (p. 400)
  • 19.1.6 Laterally Inhomogeneous Schottky Contacts 2: BEEM (p. 402)
  • 19.1.7 Laterally Inhomogeneous Schottky Contacts 3: I/V Characteristics (p. 407)
  • 19.1.8 The MIGS-and-Electronegativity Concept: Experiment and Theory (p. 411)
  • 19.1.9 Direct Observations of MIGS (p. 418)
  • 19.1.10 Extrinsic Interface Dipoles 1: Interface Doping (p. 420)
  • 19.1.11 Extrinsic Interface Dipoles 2: Metal/Si(111)-(7 × 7) i Contacts (p. 424)
  • 19.1.12 Extrinsic Interface Dipoles 3: Epitaxial Silicide/Silicon Interfaces (p. 427)
  • 19.1.13 Origin of Lateral Barrier-Height Inhomogeneities 1: Natural Nonuniformities (p. 434)
  • 19.1.14 Origin of Lateral Barrier-Height Inhomogeneities 2: Extrinsic Nonuniformities (p. 435)
  • 19.1.15 Slope Parameter (p. 437)
  • 19.1.16 Schottky Contacts on Ternary III-V Alloys (p. 439)
  • 19.1.17 Temperature and High-Pressure Effects (p. 444)
  • 19.1.18 Ohmic Contacts (p. 451)
  • 19.2 Semiconductor Heterostructures (p. 455)
  • 19.2.1 Band-Structure Lineup (p. 455)
  • 19.2.2 Interface Dipoles at Polar Interfaces (p. 457)
  • 19.2.3 Lattice-Matched Ternary and Quaternary III-V Alloys (p. 461)
  • 19.2.4 Pressure and Temperature Dependence of Valence-Band Offsets (p. 467)
  • 19.2.5 Pseudomorphic Interfaces (p. 468)
  • 19.2.6 Metamorphic Heterostructures (p. 471)
  • 19.3 Layered Semiconductors (p. 472)
  • 19.4 Insulator Interfaces (p. 476)
  • 19.4.1 Metal-Insulator Contacts (p. 476)
  • 19.4.2 Semiconductor-Insulator Interfaces (p. 479)
  • Appendix (p. 483)
  • References (p. 487)
  • Index of Reconstructions and Adsorbates (p. 535)
  • Subject Index (p. 539)

Powered by Koha