MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Atomic force microscopy for biologists / V. J. Morris, A. R. Kirby and A. P. Gunning.

By: Morris, V. J.
Contributor(s): Kirby, A. R | Gunning, A. P.
Material type: materialTypeLabelBookPublisher: London : Singapore ; River Edge, NJ : Imperial College Press ; Distributed by World Scientific Pub., 1999Description: xiv, 332 p. : ill. ; 23 cm. + hbk.ISBN: 1860941990.Subject(s): Atomic force microscopyDDC classification: 570.282
Contents:
An introduction -- Apparatus -- Basic principles -- Macromolecules -- Interfacial systems -- Ordered macromolecules -- Cells, tissue and biominerals -- Other probe microscopes.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 570.282 (Browse shelf(Opens below)) 1 Available 00075240
Total holds: 0

Enhanced descriptions from Syndetics:

Atomic force microscopy (AFM) is part of a range of emerging microscopic methods for biologists which offer the magnification range of both the light and electron microscope, but allow imaging under the 'natural' conditions usually associated with the light microscope. To biologists AFM offers the prospect of high resolution images of biological material, images of molecules and their interactions even under physiological conditions, and the study of molecular processes in living systems. This book provides a realistic appreciation of the advantages and limitations of the technique and the present and future potential for improving the understanding of biological systems.

Includes bibliographical references and index.

An introduction -- Apparatus -- Basic principles -- Macromolecules -- Interfacial systems -- Ordered macromolecules -- Cells, tissue and biominerals -- Other probe microscopes.

Table of contents provided by Syndetics

  • Chapter 1 An Introduction (p. 1)
  • Chapter 2 Apparatus (p. 5)
  • 2.1. The atomic force microscope (p. 5)
  • 2.2. Piezoelectric scanners (p. 8)
  • 2.3. Probes and cantilevers (p. 9)
  • 2.3.1. Cantilever geometry (p. 10)
  • 2.3.2. Tip shape (p. 12)
  • 2.3.3. Tip functionality (p. 13)
  • 2.4. Sample holders (p. 14)
  • 2.4.1. Liquid cells (p. 14)
  • 2.5. Detection methods (p. 15)
  • 2.5.1. Optical detectors: laser beam deflection (p. 16)
  • 2.5.2. Optical detectors: interferometry (p. 17)
  • 2.5.3. Electrical detectors: electron tunnelling (p. 18)
  • 2.5.4. Electrical detectors: capacitance (p. 19)
  • 2.5.5. Electrical detectors: piezoelectric cantilevers (p. 20)
  • 2.6. Control systems (p. 21)
  • 2.6.1. AFM electronics (p. 21)
  • 2.6.2. Operation of the electronics (p. 24)
  • 2.6.3. Feedback control loops (p. 25)
  • 2.6.4. Design limitations (p. 28)
  • 2.6.5. Enhancing the performance of large scanners (p. 29)
  • 2.7. Vibration isolation: thermal and mechanical (p. 29)
  • 2.8. Calibration (p. 30)
  • 2.8.1. Piezoelectric scanner non-linearity (p. 31)
  • 2.8.2. Tip related factors (p. 32)
  • 2.8.3. Determining cantilever force constants (p. 34)
  • 2.8.4. Calibration standards (p. 35)
  • 2.8.5. Tips for scanning a calibration specimen (p. 36)
  • 2.9. Integrated AFMs (p. 37)
  • 2.9.1. Combined AFM-light microscope (AFM-LM) (p. 37)
  • 2.9.2. 'Submarine' AFM-the combined AFM-Langmuir Trough (p. 38)
  • 2.9.3. Combined AFM-surface plasmon resonance (AFM-SPR) (p. 38)
  • 2.9.4. Cryo-AFM (p. 39)
  • Chapter 3 Basic Principles (p. 44)
  • 3.1. Forces (p. 44)
  • 3.1.1. The Van der Waals force and force-distance curves (p. 44)
  • 3.1.2. The electrostatic force (p. 47)
  • 3.1.3. Capillary and adhesive forces (p. 48)
  • 3.1.4. Double layer forces (p. 49)
  • 3.2. Imaging modes (p. 50)
  • 3.2.1. Contact dc mode (p. 50)
  • 3.2.2. Non-contact ac modes (p. 51)
  • 3.2.3. Error signal or deflection mode (p. 54)
  • 3.3. Image types (p. 55)
  • 3.3.1. Topographical (p. 55)
  • 3.3.2. Frictional force (p. 56)
  • 3.3.3. Phase (p. 56)
  • 3.4. Substrates (p. 57)
  • 3.4.1. Mica (p. 57)
  • 3.4.2. Glass (p. 58)
  • 3.4.3. Graphite (p. 58)
  • 3.5. Common problems (p. 59)
  • 3.5.1. Thermal drift (p. 59)
  • 3.5.2. Multiple tip effects (p. 59)
  • 3.5.3. Tip convolution and probe broadening (p. 61)
  • 3.5.4. Sample roughness (p. 61)
  • 3.5.5. Sample mobility (p. 63)
  • 3.5.6. Imaging under liquid (p. 63)
  • 3.6. Getting started (p. 64)
  • 3.6.1. DNA (p. 64)
  • 3.6.2. Troublesome large samples (p. 67)
  • 3.7. Image optimisation (p. 69)
  • 3.7.1. Grey levels and colour tables (p. 69)
  • 3.7.2. Brightness and contrast (p. 70)
  • 3.7.3. High and low pass filtering (p. 70)
  • 3.7.4. Normalisation and plane fitting (p. 70)
  • 3.7.5. Despike (p. 71)
  • 3.7.6. Fourier filtering (p. 71)
  • 3.7.7. Correlation averaging (p. 73)
  • 3.7.8. Stereographs (p. 73)
  • 3.7.9. Do your homework! (p. 74)
  • Chapter 4 Macromolecules (p. 76)
  • 4.1. Imaging methods (p. 76)
  • 4.1.1. Tip adhesion, molecular damage and displacement (p. 76)
  • 4.1.2. Depositing macromolecules onto substrates (p. 77)
  • 4.1.3. Metal coated samples (p. 78)
  • 4.1.4. Imaging in air (p. 79)
  • 4.1.5. Imaging under non aqueous liquids (p. 80)
  • 4.1.6. Binding molecules to the substrate (p. 83)
  • 4.1.7. Imaging under water or buffers (p. 87)
  • 4.2. Nucleic acids: DNA (p. 88)
  • 4.2.1. Imaging DNA (p. 88)
  • 4.2.2. DNA conformation, size and shape (p. 90)
  • 4.2.3. DNA-protein interactions (p. 95)
  • 4.2.4. Location and mapping of specific sites (p. 99)
  • 4.2.5. Chromosomes (p. 101)
  • 4.3. Nucleic acids: RNA (p. 104)
  • 4.4. Polysaccharides (p. 105)
  • 4.4.1. Imaging polysaccharides (p. 106)
  • 4.4.2. Size, shape, structure and conformation (p. 108)
  • 4.4.3. Aggregates, networks and gels (p. 113)
  • 4.4.4. Cellulose, plant cell walls and starch (p. 118)
  • 4.4.5. Proteoglycans (p. 123)
  • 4.5. Proteins (p. 123)
  • 4.5.1. Globular proteins (p. 124)
  • 4.5.2. Antibodies (p. 129)
  • 4.5.3. Fibrous proteins (p. 132)
  • Chapter 5 Interfacial Systems (p. 160)
  • 5.1. Introduction to interfaces (p. 160)
  • 5.1.1. Surface activity (p. 160)
  • 5.1.2. AFM of interfacial systems (p. 164)
  • 5.1.3. The Langmuir trough (p. 164)
  • 5.1.4. Langmuir-Blodgett film transfer (p. 166)
  • 5.2. Sample preparation (p. 168)
  • 5.2.1. Cleaning protocols: glassware and trough (p. 168)
  • 5.2.2. Substrates (p. 169)
  • 5.2.3. Performing the dip (p. 171)
  • 5.3. Phospholipids (p. 172)
  • 5.3.1. AFM studies (p. 174)
  • 5.3.2. Modification of phospholipid bilayers with the AFM (p. 174)
  • 5.3.3. Studying intrinsic bilayer properties by AFM (p. 176)
  • 5.3.4. Ripple phases in phospholipid bilayers (p. 179)
  • 5.3.5. Mixed phospholipid films (p. 182)
  • 5.3.6. Effect of supporting layers (p. 185)
  • 5.3.7. Dynamic processes of phopholipid layers (p. 187)
  • 5.4. Liposomes and intact vesicles (p. 190)
  • 5.5. Lipid-protein mixed films (p. 192)
  • 5.6. Miscellaneous lipid films (p. 196)
  • 5.7. Interfacial protein films (p. 197)
  • 5.7.1. Specific precautions (p. 197)
  • 5.7.2. AFM studies of interfacial protein films (p. 199)
  • Chapter 6 Ordered Macromolecules (p. 209)
  • 6.1 Three dimensional crystals (p. 209)
  • 6.1.1. Crystalline cellulose (p. 209)
  • 6.1.2. Protein crystals (p. 211)
  • 6.1.3. Nucleic acid crystals (p. 214)
  • 6.1.4. Viruses and virus crystals (p. 215)
  • 6.2. Two dimensional protein crystals (p. 217)
  • 6.2.1. What does AFM have to offer? (p. 218)
  • 6.2.2. Sample preparation: membrane proteins (p. 220)
  • 6.2.3. Sample preparation: soluble proteins (p. 220)
  • 6.3. AFM studies of 2D membrane protein crystals (p. 224)
  • 6.3.1. Purple membrane (p. 224)
  • 6.3.2. Gap junctions (p. 227)
  • 6.3.3. Photosynthetic protein membranes (p. 229)
  • 6.3.4. ATPase in kidney membranes (p. 230)
  • 6.3.5. OmpF porin (p. 230)
  • 6.3.6. Bacterial S layers (p. 232)
  • 6.3.7. Bacteriophage [phis]29 head-tail connector (p. 235)
  • 6.3.8. Gas vesicle protein (p. 237)
  • 6.4. AFM studies of 2D crystals of soluble proteins (p. 238)
  • 6.4.1. Imaging conditions (p. 240)
  • 6.4.2. Electrostatic considerations (p. 242)
  • Chapter 7 Cells, Tissue and Biominerals (p. 254)
  • 7.1. Imaging methods (p. 254)
  • 7.1.1. Sample preparation (p. 255)
  • 7.1.2. Force mapping and mechanical measurements (p. 257)
  • 7.2. Microbial cells: bacteria, spores and yeasts (p. 264)
  • 7.2.1. Bacteria (p. 264)
  • 7.2.2. Yeasts (p. 267)
  • 7.3. Blood cells (p. 269)
  • 7.3.1. Erythrocytes (p. 269)
  • 7.3.2. Leukocytes and lymphocytes (p. 271)
  • 7.3.3. Platelets (p. 272)
  • 7.4. Neurons and Glial cells (p. 273)
  • 7.5. Epithelial cells (p. 275)
  • 7.6. Non-confluent renal cells (p. 278)
  • 7.7. Endothelial cells (p. 279)
  • 7.8. Cardiocytes (p. 281)
  • 7.9. Other mammalian cells (p. 283)
  • 7.10. Plant cells (p. 285)
  • 7.11. Tissue (p. 289)
  • 7.11.1. Embedded sections (p. 290)
  • 7.11.2. Embedment-free sections (p. 291)
  • 7.11.3. Hydrated sections (p. 292)
  • 7.11.4. Freeze-fracture replicas (p. 293)
  • 7.11.5. Immunolabelling (p. 293)
  • 7.12. Biominerals (p. 294)
  • 7.12.1. Bone, tendon and cartilage (p. 294)
  • 7.12.2. Teeth (p. 295)
  • 7.12.3. Shells (p. 297)
  • Chapter 8 Other Probe Microscopes (p. 311)
  • 8.1. Overview (p. 311)
  • 8.2. Scanning tunnelling microscope (STM) (p. 311)
  • 8.3. Scanning near-field optical microscope (SNOM) (p. 314)
  • 8.4. Scanning ion conductance microscope (SICM) (p. 317)
  • 8.5. Scanning thermal microscope (SThM) (p. 318)
  • 8.6. Optical tweezers and the photonic force microscope (PFM) (p. 319)
  • SPM books (p. 323)
  • Index (p. 324)

Powered by Koha