MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Fiber-optic communication systems / Govind P. Agrawal.

By: Agrawal, G. P. (Govind P.), 1951-.
Material type: materialTypeLabelBookSeries: Wiley series in microwave and optical engineering: Publisher: New York ; Chichester : Wiley, 1997Edition: 2nd ed.Description: xviii, 555 p. : ill. ; 24 cm. + hbk.ISBN: 0471175404.Subject(s): Optical communications | Fiber opticsDDC classification: 621.38275
Contents:
Introduction -- Optical fibers -- Optical transmitters -- Optical receivers -- System design and performance -- Coherent lightware systems -- Multichannel lightwave systems -- Optical amplifiers -- Dispersion compensation -- Soliton communication systems.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 621.38275 (Browse shelf(Opens below)) 1 Available 00077484
Total holds: 0

Enhanced descriptions from Syndetics:

A complete, up-to-date review of fiber-optic communication systems theory and practice

Fiber-optic communication systems technology continues to evolve rapidly. In the last five years alone, the bit rate of commercial point-to-point links has grown from 2.5 Gb/s to 40 Gb/s-and that figure is expected to more than double over the next two years! Such astonishing progress can be both inspiring and frustrating for professionals who need to stay abreast of important new developments in the field. Now Fiber-Optic Communication Systems, Second Edition makes that job a little easier.

Based on its author's exhaustive review of the past five years of published research in the field, this Second Edition, like its popular predecessor, provides an in-depth look at the state of the art in fiber-optic communication systems. While engineering aspects are discussed, the emphasis is on a physical understanding of this complex technology, from its basic concepts to the latest innovations. Thoroughly updated and expanded, Fiber-Optic Communication Systems, Second Edition:
* Includes 30% more information, including four new chapters focusing on the latest lightwave systems R&D
* Covers fundamental aspects of lightwave systems as well as a wide range of practical applications
* Functions as both a graduate-level text and a professional reference
* Features extensive references and chapter-end problem sets.

"A Wiley-Interscience publication.".

Includes bibliographical references and index.

Introduction -- Optical fibers -- Optical transmitters -- Optical receivers -- System design and performance -- Coherent lightware systems -- Multichannel lightwave systems -- Optical amplifiers -- Dispersion compensation -- Soliton communication systems.

Table of contents provided by Syndetics

  • Preface (p. xv)
  • 1 Introduction (p. 1)
  • 1.1 Historical Perspective (p. 1)
  • 1.1.1 Need for Fiber-Optic Communications (p. 2)
  • 1.1.2 Evolution of Lightwave Systems (p. 4)
  • 1.2 Basic Concepts (p. 8)
  • 1.2.1 Analog and Digital Signals (p. 8)
  • 1.2.2 Channel Multiplexing (p. 11)
  • 1.2.3 Modulation Formats (p. 13)
  • 1.3 Optical Communication Systems (p. 15)
  • 1.4 Lightwave System Components (p. 16)
  • 1.4.1 Optical Fibers as a Communication Channel (p. 17)
  • 1.4.2 Optical Transmitters (p. 17)
  • 1.4.3 Optical Receivers (p. 18)
  • Problems (p. 19)
  • References (p. 20)
  • 2 Optical Fibers (p. 23)
  • 2.1 Geometrical-Optics Description (p. 23)
  • 2.1.1 Step-Index Fibers (p. 24)
  • 2.1.2 Graded-Index Fibers (p. 26)
  • 2.2 Wave Propagation (p. 28)
  • 2.2.1 Maxwell's Equations (p. 29)
  • 2.2.2 Fiber Modes (p. 31)
  • 2.2.3 Single-Mode Fibers (p. 34)
  • 2.3 Dispersion in Single-Mode Fibers (p. 37)
  • 2.3.1 Group-Velocity Dispersion (p. 38)
  • 2.3.2 Material Dispersion (p. 39)
  • 2.3.3 Waveguide Dispersion (p. 41)
  • 2.3.4 Higher-Order Dispersion (p. 42)
  • 2.3.5 Polarization-Mode Dispersion (p. 43)
  • 2.4 Dispersion-Induced Limitations (p. 45)
  • 2.4.1 Basic Propagation Equation (p. 46)
  • 2.4.2 Chirped Gaussian Pulses (p. 47)
  • 2.4.3 Limitations on the Bit Rate (p. 50)
  • 2.4.4 Fiber Bandwidth (p. 53)
  • 2.5 Fiber Losses (p. 55)
  • 2.5.1 Attenuation Coefficient (p. 55)
  • 2.5.2 Material Absorption (p. 56)
  • 2.5.3 Rayleigh Scattering (p. 57)
  • 2.5.4 Waveguide Imperfections (p. 58)
  • 2.6 Nonlinear Optical Effects (p. 59)
  • 2.6.1 Stimulated Light Scattering (p. 59)
  • 2.6.2 Nonlinear Phase Modulation (p. 64)
  • 2.6.3 Four-Wave Mixing (p. 66)
  • 2.7 Fiber Manufacturing (p. 67)
  • 2.7.1 Design Issues (p. 67)
  • 2.7.2 Fabrication Methods (p. 68)
  • 2.7.3 Cables and Connectors (p. 70)
  • Problems (p. 72)
  • References (p. 74)
  • 3 Optical Transmitters (p. 77)
  • 3.1 Basic Concepts (p. 77)
  • 3.1.1 Emission and Absorption Rates (p. 78)
  • 3.1.2 p--n Junctions (p. 81)
  • 3.1.3 Nonradiative Recombination (p. 83)
  • 3.1.4 Semiconductor Materials (p. 84)
  • 3.2 Light-Emitting Diodes (p. 87)
  • 3.2.1 Power--Current Characteristics (p. 87)
  • 3.2.2 LED Spectrum (p. 89)
  • 3.2.3 Modulation Response (p. 90)
  • 3.2.4 LED Structures (p. 91)
  • 3.3 Semiconductor Lasers (p. 92)
  • 3.3.1 Optical Gain (p. 93)
  • 3.3.2 Feedback and Laser Threshold (p. 94)
  • 3.3.3 Laser Structures (p. 96)
  • 3.4 Control of Longitudinal Modes (p. 99)
  • 3.4.1 Distributed Feedback Lasers (p. 100)
  • 3.4.2 Coupled-Cavity Semiconductor Lasers (p. 102)
  • 3.4.3 Tunable Semiconductor Lasers (p. 103)
  • 3.4.4 Vertical-Cavity Surface-Emitting Lasers (p. 105)
  • 3.5 Laser Characteristics (p. 106)
  • 3.5.1 CW Characteristics (p. 107)
  • 3.5.2 Small-Signal Modulation (p. 110)
  • 3.5.3 Large-Signal Modulation (p. 112)
  • 3.5.4 Relative Intensity Noise (p. 114)
  • 3.5.5 Spectral Linewidth (p. 116)
  • 3.6 Transmitter Design (p. 118)
  • 3.6.1 Source--Fiber Coupling (p. 118)
  • 3.6.2 Driving Circuitry (p. 121)
  • 3.6.3 Optical Modulators (p. 122)
  • 3.6.4 Optoelectronic Integration (p. 123)
  • 3.6.5 Reliability and Packaging (p. 124)
  • Problems (p. 126)
  • References (p. 127)
  • 4 Optical Receivers (p. 133)
  • 4.1 Basic Concepts (p. 133)
  • 4.1.1 Detector Responsivity (p. 133)
  • 4.1.2 Rise Time and Bandwidth (p. 135)
  • 4.2 Common Photodetectors (p. 136)
  • 4.2.1 p--n Photodiodes (p. 137)
  • 4.2.2 p--i--n Photodiodes (p. 138)
  • 4.2.3 Avalanche Photodiodes (p. 142)
  • 4.2.4 MSM Photodetectors (p. 148)
  • 4.3 Receiver Design (p. 149)
  • 4.3.1 Front End (p. 149)
  • 4.3.2 Linear Channel (p. 150)
  • 4.3.3 Decision Circuit (p. 152)
  • 4.3.4 Integrated Receivers (p. 153)
  • 4.4 Receiver Noise (p. 155)
  • 4.4.1 Noise Mechanisms (p. 156)
  • 4.4.2 p--i--n Receivers (p. 158)
  • 4.4.3 APD Receivers (p. 159)
  • 4.5 Receiver Sensitivity (p. 162)
  • 4.5.1 Bit-Error Rate (p. 162)
  • 4.5.2 Minimum Received Power (p. 164)
  • 4.5.3 Quantum Limit of Photodetection (p. 167)
  • 4.6 Sensitivity Degradation (p. 168)
  • 4.6.1 Extinction Ratio (p. 168)
  • 4.6.2 Intensity Noise (p. 169)
  • 4.6.3 Timing Jitter (p. 171)
  • 4.7 Receiver Performance (p. 174)
  • Problems (p. 176)
  • References (p. 178)
  • 5 Lightwave Systems (p. 183)
  • 5.1 System Architectures (p. 183)
  • 5.1.1 Point-to-Point Links (p. 183)
  • 5.1.2 Distribution Networks (p. 185)
  • 5.1.3 Local-Area Networks (p. 186)
  • 5.2 Design Guidelines (p. 188)
  • 5.2.1 Loss-Limited Lightwave Systems (p. 189)
  • 5.2.2 Dispersion-Limited Lightwave Systems (p. 190)
  • 5.2.3 Power Budget (p. 192)
  • 5.2.4 Rise-Time Budget (p. 193)
  • 5.3 Long-Haul Systems (p. 195)
  • 5.3.1 Performance-Limiting Factors (p. 196)
  • 5.3.2 Terrestrial Lightwave Systems (p. 198)
  • 5.3.3 Undersea Lightwave Systems (p. 200)
  • 5.4 Sources of Power Penalty (p. 202)
  • 5.4.1 Modal Noise (p. 202)
  • 5.4.2 Dispersive Pulse Broadening (p. 204)
  • 5.4.3 Mode-Partition Noise (p. 205)
  • 5.4.4 Frequency Chirping (p. 209)
  • 5.4.5 Reflection Feedback and Noise (p. 213)
  • 5.5 Computer-Aided Design (p. 217)
  • Problems (p. 219)
  • References (p. 220)
  • 6 Optical Amplifiers (p. 226)
  • 6.1 Basic Concepts (p. 226)
  • 6.1.1 Gain Spectrum and Bandwidth (p. 227)
  • 6.1.2 Gain Saturation (p. 229)
  • 6.1.3 Amplifier Noise (p. 230)
  • 6.1.4 Amplifier Applications (p. 231)
  • 6.2 Semiconductor Optical Amplifiers (p. 232)
  • 6.2.1 Amplifier Design (p. 232)
  • 6.2.2 Amplifier Characteristics (p. 234)
  • 6.2.3 Pulse Amplification (p. 237)
  • 6.2.4 System Applications (p. 241)
  • 6.3 Raman Amplifiers (p. 243)
  • 6.3.1 Raman Gain and Bandwidth (p. 243)
  • 6.3.2 Amplifier Characteristics (p. 244)
  • 6.3.3 Amplifier Performance (p. 246)
  • 6.4 Erbium-Doped Fiber Amplifiers (p. 250)
  • 6.4.1 Pumping Requirements (p. 251)
  • 6.4.2 Gain Spectrum (p. 252)
  • 6.4.3 Simple Theory (p. 253)
  • 6.4.4 Amplifier Noise (p. 255)
  • 6.4.5 Multichannel Amplification (p. 257)
  • 6.4.6 Distributed-Gain Amplifiers (p. 260)
  • 6.5 System Applications (p. 261)
  • 6.5.1 Optical Preamplification (p. 261)
  • 6.5.2 Noise Accumulation in Long-Haul Systems (p. 264)
  • 6.5.3 ASE-Induced Timing Jitter (p. 266)
  • 6.5.4 Accumulated Dispersive and Nonlinear Effects (p. 269)
  • 6.5.5 WDM-Related Impairments (p. 271)
  • Problems (p. 272)
  • References (p. 273)
  • 7 Dispersion Management (p. 279)
  • 7.1 Need for Dispersion Management (p. 279)
  • 7.2 Precompensation Schemes (p. 281)
  • 7.2.1 Prechirp Technique (p. 281)
  • 7.2.2 Novel Coding Techniques (p. 283)
  • 7.2.3 Nonlinear Prechirp Techniques (p. 285)
  • 7.3 Postcompensation Techniques (p. 286)
  • 7.4 Dispersion-Compensating Fibers (p. 288)
  • 7.5 Optical Filters (p. 290)
  • 7.6 Fiber Bragg Gratings (p. 293)
  • 7.6.1 Uniform-Period Gratings (p. 293)
  • 7.6.2 Chirped Fiber Gratings (p. 296)
  • 7.6.3 Chirped Mode Couplers (p. 299)
  • 7.7 Optical Phase Conjugation (p. 300)
  • 7.7.1 Principle of Operation (p. 300)
  • 7.7.2 Compensation of Self-Phase Modulation (p. 301)
  • 7.7.3 Phase-Conjugated Signal (p. 302)
  • 7.8 Long-Haul Lightwave Systems (p. 305)
  • 7.8.1 Periodic Dispersion Maps (p. 305)
  • 7.8.2 Simple Theory (p. 307)
  • 7.8.3 Intrachannel Nonlinear Effects (p. 309)
  • 7.9 High-Capacity Systems (p. 310)
  • 7.9.1 Broadband Dispersion Compensation (p. 311)
  • 7.9.2 Tunable Dispersion Compensation (p. 313)
  • 7.9.3 Higher-Order Dispersion Management (p. 315)
  • 7.9.4 PMD Compensation (p. 317)
  • Problems (p. 321)
  • References (p. 322)
  • 8 Multichannel Systems (p. 330)
  • 8.1 WDM Lightwave Systems (p. 330)
  • 8.1.1 High-Capacity Point-to-Point Links (p. 331)
  • 8.1.2 Wide-Area and Metro-Area Networks (p. 334)
  • 8.1.3 Multiple-Access WDM Networks (p. 336)
  • 8.2 WDM Components (p. 339)
  • 8.2.1 Tunable Optical Filters (p. 339)
  • 8.2.2 Multiplexers and Demultiplexers (p. 344)
  • 8.2.3 Add-Drop Multiplexers (p. 348)
  • 8.2.4 Star Couplers (p. 350)
  • 8.2.5 Wavelength Routers (p. 351)
  • 8.2.6 Optical Cross-Connects (p. 354)
  • 8.2.7 Wavelength Converters (p. 357)
  • 8.2.8 WDM Transmitters and Receivers (p. 360)
  • 8.3 System Performance Issues (p. 362)
  • 8.3.1 Heterowavelength Linear Crosstalk (p. 363)
  • 8.3.2 Homowavelength Linear Crosstalk (p. 365)
  • 8.3.3 Nonlinear Raman Crosstalk (p. 366)
  • 8.3.4 Stimulated Brillouin Scattering (p. 369)
  • 8.3.5 Cross-Phase Modulation (p. 370)
  • 8.3.6 Four-Wave Mixing (p. 372)
  • 8.3.7 Other Design Issues (p. 374)
  • 8.4 Time-Division Multiplexing (p. 375)
  • 8.4.1 Channel Multiplexing (p. 375)
  • 8.4.2 Channel Demultiplexing (p. 377)
  • 8.4.3 System Performance (p. 380)
  • 8.5 Subcarrier Multiplexing (p. 381)
  • 8.5.1 Analog SCM Systems (p. 382)
  • 8.5.2 Digital SCM Systems (p. 385)
  • 8.5.3 Multiwavelength SCM Systems (p. 386)
  • 8.6 Code-Division Multiplexing (p. 388)
  • 8.6.1 Direct-Sequence Encoding (p. 388)
  • 8.6.2 Spectral Encoding (p. 390)
  • Problems (p. 393)
  • References (p. 394)
  • 9 Soliton Systems (p. 404)
  • 9.1 Fiber Solitons (p. 404)
  • 9.1.1 Nonlinear Schrodinger Equation (p. 405)
  • 9.1.2 Bright Solitons (p. 406)
  • 9.1.3 Dark Solitons (p. 409)
  • 9.2 Soliton-Based Communications (p. 411)
  • 9.2.1 Information Transmission with Solitons (p. 411)
  • 9.2.2 Soliton Interaction (p. 412)
  • 9.2.3 Frequency Chirp (p. 414)
  • 9.2.4 Soliton Transmitters (p. 416)
  • 9.3 Loss-Managed Solitons (p. 418)
  • 9.3.1 Loss-Induced Soliton Broadening (p. 418)
  • 9.3.2 Lumped Amplification (p. 420)
  • 9.3.3 Distributed Amplification (p. 422)
  • 9.3.4 Experimental Progress (p. 425)
  • 9.4 Dispersion-Managed Solitons (p. 427)
  • 9.4.1 Dispersion-Decreasing Fibers (p. 427)
  • 9.4.2 Periodic Dispersion Maps (p. 429)
  • 9.4.3 Design Issues (p. 432)
  • 9.5 Impact of Amplifier Noise (p. 435)
  • 9.5.1 Moment Method (p. 435)
  • 9.5.2 Energy and Frequency Fluctuations (p. 437)
  • 9.5.3 Timing Jitter (p. 439)
  • 9.5.4 Control of Timing Jitter (p. 442)
  • 9.6 High-Speed Soliton Systems (p. 445)
  • 9.6.1 System Design Issues (p. 445)
  • 9.6.2 Soliton Interaction (p. 447)
  • 9.6.3 Impact of Higher-Order Effects (p. 450)
  • 9.6.4 Timing Jitter (p. 452)
  • 9.7 WDM Soliton Systems (p. 458)
  • 9.7.1 Interchannel Collisions (p. 458)
  • 9.7.2 Effect of Lumped Amplification (p. 461)
  • 9.7.3 Timing Jitter (p. 461)
  • 9.7.4 Dispersion Management (p. 463)
  • Problems (p. 467)
  • References (p. 469)
  • 10 Coherent Lightwave Systems (p. 478)
  • 10.1 Basic Concepts (p. 479)
  • 10.1.1 Local Oscillator (p. 479)
  • 10.1.2 Homodyne Detection (p. 480)
  • 10.1.3 Heterodyne Detection (p. 480)
  • 10.1.4 Signal-to-Noise Ratio (p. 481)
  • 10.2 Modulation Formats (p. 482)
  • 10.2.1 ASK Format (p. 483)
  • 10.2.2 PSK Format (p. 484)
  • 10.2.3 FSK Format (p. 485)
  • 10.3 Demodulation Schemes (p. 487)
  • 10.3.1 Heterodyne Synchronous Demodulation (p. 488)
  • 10.3.2 Heterodyne Asynchronous Demodulation (p. 488)
  • 10.4 Bit-Error Rate (p. 490)
  • 10.4.1 Synchronous ASK Receivers (p. 490)
  • 10.4.2 Synchronous PSK Receivers (p. 492)
  • 10.4.3 Synchronous FSK Receivers (p. 493)
  • 10.4.4 Asynchronous ASK Receivers (p. 493)
  • 10.4.5 Asynchronous FSK Receivers (p. 495)
  • 10.4.6 Asynchronous DPSK Receivers (p. 497)
  • 10.5 Sensitivity Degradation (p. 497)
  • 10.5.1 Phase Noise (p. 498)
  • 10.5.2 Intensity Noise (p. 500)
  • 10.5.3 Polarization Mismatch (p. 502)
  • 10.5.4 Fiber Dispersion (p. 504)
  • 10.5.5 Other Limiting Factors (p. 506)
  • 10.6 System Performance (p. 507)
  • 10.6.1 Asynchronous Heterodyne Systems (p. 507)
  • 10.6.2 Synchronous Heterodyne Systems (p. 508)
  • 10.6.3 Homodyne Systems (p. 508)
  • 10.6.4 Current Status (p. 510)
  • Problems (p. 511)
  • References (p. 512)
  • Appendix A System of Units (p. 518)
  • Appendix B Acronyms (p. 520)
  • Appendix C General Formula for Pulse Broadening (p. 524)
  • Appendix D Ultimate System Capacity (p. 527)
  • References (p. 528)
  • Appendix E Software Package (p. 529)
  • Index (p. 531)

Author notes provided by Syndetics

GOVIND P. AGRAWAL, PhD, is a professor at the Institute of Optics at the University of Rochester. He is the author or coauthor of nearly 250 research papers, book chapters, and monographs. Dr. Agrawal is a Fellow of both the Optical Society of America and the Institute of Electrical and Electronics Engineering.

Powered by Koha