MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Nonlinear fiber optics / Govind P. Agrawal.

By: Agrawal, G. P. (Govind P.), 1951-.
Material type: materialTypeLabelBookSeries: Optics and photonics.Publisher: San Diego ; London : Academic Press, 1995Edition: 2nd ed.Description: xviii, 592 p. : ill. ; 24 cm.ISBN: 0120451425.Subject(s): Fiber optics | Nonlinear opticsDDC classification: 621.3692
Contents:
Introduction -- Wave propagation in optical fibers -- Group-velocity dispersion -- Self-phase modulation -- Optical solitons -- Optical pulse compression -- Cross-phase modulation -- Stimulated raman scattering -- Stimulated brillouin scattering -- Parametric processes -- Fiber amplifiers -- Fiber lasers.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 621.3692 (Browse shelf(Opens below)) 1 Available 00075579
Total holds: 0

Enhanced descriptions from Syndetics:

The field of nonlinear fibre optics has grown substantially since the first edition of Nonlinear Fibre Optics, published in 1989. Like the first edition, this second edition is a comprehensive, tutorial and up-to-date account of nonlinear optical phenomena in fibre optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fibre optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fibre communication systems. This is a completely new book containing either new sections or major revisions in every chapter.

Previous ed.: 1989.

Continues: Quantum Electronics.

Includes bibliographical references and index.

Introduction -- Wave propagation in optical fibers -- Group-velocity dispersion -- Self-phase modulation -- Optical solitons -- Optical pulse compression -- Cross-phase modulation -- Stimulated raman scattering -- Stimulated brillouin scattering -- Parametric processes -- Fiber amplifiers -- Fiber lasers.

Table of contents provided by Syndetics

  • Preface (p. xv)
  • 1 Introduction (p. 1)
  • 1.1 Historical Perspective (p. 1)
  • 1.2 Fiber Characteristics (p. 3)
  • 1.2.1 Material and Fabrication (p. 4)
  • 1.2.2 Fiber Losses (p. 5)
  • 1.2.3 Chromatic Dispersion (p. 7)
  • 1.2.4 Polarization-Mode Dispersion (p. 13)
  • 1.3 Fiber Nonlinearities (p. 17)
  • 1.3.1 Nonlinear Refraction (p. 17)
  • 1.3.2 Stimulated Inelastic Scattering (p. 19)
  • 1.3.3 Importance of Nonlinear Effects (p. 20)
  • 1.4 Overview (p. 22)
  • Problems (p. 25)
  • References (p. 25)
  • 2 Pulse Propagation in Fibers (p. 31)
  • 2.1 Maxwell's Equations (p. 31)
  • 2.2 Fiber Modes (p. 34)
  • 2.2.1 Eigenvalue Equation (p. 34)
  • 2.2.2 Single-Mode Condition (p. 36)
  • 2.2.3 Characteristics of the Fundamental Mode (p. 37)
  • 2.3 Pulse-Propagation Equation (p. 39)
  • 2.3.1 Nonlinear Pulse Propagation (p. 39)
  • 2.3.2 Higher-Order Nonlinear Effects (p. 45)
  • 2.4 Numerical Methods (p. 51)
  • 2.4.1 Split-Step Fourier Method (p. 51)
  • 2.4.2 Finite-Difference Methods (p. 55)
  • Problems (p. 57)
  • References (p. 58)
  • 3 Group-Velocity Dispersion (p. 63)
  • 3.1 Different Propagation Regimes (p. 63)
  • 3.2 Dispersion-Induced Pulse Broadening (p. 66)
  • 3.2.1 Gaussian Pulses (p. 67)
  • 3.2.2 Chirped Gaussian Pulses (p. 69)
  • 3.2.3 Hyperbolic-Secant Pulses (p. 71)
  • 3.2.4 Super-Gaussian Pulses (p. 72)
  • 3.2.5 Experimental Results (p. 75)
  • 3.3 Third-Order Dispersion (p. 76)
  • 3.3.1 Changes in Pulse Shape (p. 77)
  • 3.3.2 Broadening Factor (p. 79)
  • 3.3.3 Arbitrary-Shape Pulses (p. 82)
  • 3.3.4 Ultrashort-Pulse Measurements (p. 85)
  • 3.4 Dispersion Management (p. 86)
  • 3.4.1 GVD-Induced Limitations (p. 86)
  • 3.4.2 Dispersion Compensation (p. 88)
  • 3.4.3 Compensation of Third-Order Dispersion (p. 90)
  • Problems (p. 93)
  • References (p. 94)
  • 4 Self-Phase Modulation (p. 97)
  • 4.1 SPM-Induced Spectral Broadening (p. 97)
  • 4.1.1 Nonlinear Phase Shift (p. 98)
  • 4.1.2 Changes in Pulse Spectra (p. 100)
  • 4.1.3 Effect of Pulse Shape and Initial Chirp (p. 104)
  • 4.1.4 Effect of Partial Coherence (p. 106)
  • 4.2 Effect of Group-Velocity Dispersion (p. 109)
  • 4.2.1 Pulse Evolution (p. 109)
  • 4.2.2 Broadening Factor (p. 113)
  • 4.2.3 Optical Wave Breaking (p. 115)
  • 4.2.4 Experimental Results (p. 118)
  • 4.2.5 Effect of Third-Order Dispersion (p. 120)
  • 4.3 Higher-Order Nonlinear Effects (p. 122)
  • 4.3.1 Self-Steepening (p. 123)
  • 4.3.2 Effect of GVD on Optical Shocks (p. 126)
  • 4.3.3 Intrapulse Raman Scattering (p. 128)
  • Problems (p. 130)
  • References (p. 130)
  • 5 Optical Solitons (p. 135)
  • 5.1 Modulation Instability (p. 136)
  • 5.1.1 Linear Stability Analysis (p. 136)
  • 5.1.2 Gain Spectrum (p. 138)
  • 5.1.3 Experimental Observation (p. 140)
  • 5.1.4 Ultrashort Pulse Generation (p. 142)
  • 5.1.5 Impact on Lightwave Systems (p. 144)
  • 5.2 Fiber Solitons (p. 146)
  • 5.2.1 Inverse Scattering Method (p. 147)
  • 5.2.2 Fundamental Soliton (p. 149)
  • 5.2.3 Higher-Order Solitons (p. 152)
  • 5.2.4 Experimental Confirmation (p. 154)
  • 5.2.5 Soliton Stability (p. 156)
  • 5.3 Other Types of Solitons (p. 159)
  • 5.3.1 Dark Solitons (p. 159)
  • 5.3.2 Dispersion-Managed Solitons (p. 164)
  • 5.3.3 Bistable Solitons (p. 165)
  • 5.4 Perturbation of Solitons (p. 166)
  • 5.4.1 Perturbation Methods (p. 167)
  • 5.4.2 Fiber Losses (p. 169)
  • 5.4.3 Soliton Amplification (p. 171)
  • 5.4.4 Soliton Interaction (p. 176)
  • 5.5 Higher-Order Effects (p. 180)
  • 5.5.1 Third-Order Dispersion (p. 181)
  • 5.5.2 Self-Steepening (p. 183)
  • 5.5.3 Intrapulse Raman Scattering (p. 186)
  • 5.5.4 Propagation of Femtosecond Pulses (p. 190)
  • Problems (p. 192)
  • References (p. 193)
  • 6 Polarization Effects (p. 203)
  • 6.1 Nonlinear Birefringence (p. 204)
  • 6.1.1 Origin of Nonlinear Birefringence (p. 204)
  • 6.1.2 Coupled-Mode Equations (p. 206)
  • 6.1.3 Elliptically Birefringent Fibers (p. 208)
  • 6.2 Nonlinear Phase Shift (p. 210)
  • 6.2.1 Nondispersive XPM (p. 210)
  • 6.2.2 Optical Kerr Effect (p. 211)
  • 6.2.3 Pulse Shaping (p. 216)
  • 6.3 Evolution of Polarization State (p. 218)
  • 6.3.1 Analytic Solution (p. 219)
  • 6.3.2 Poincare-Sphere Representation (p. 221)
  • 6.3.3 Polarization Instability (p. 224)
  • 6.3.4 Polarization Chaos (p. 227)
  • 6.4 Vector Modulation Instability (p. 228)
  • 6.4.1 Low-Birefringence Fibers (p. 229)
  • 6.4.2 High-Birefringence Fibers (p. 231)
  • 6.4.3 Isotropic Fibers (p. 234)
  • 6.4.4 Experimental Results (p. 235)
  • 6.5 Birefringence and Solitons (p. 238)
  • 6.5.1 Low-Birefringence Fibers (p. 239)
  • 6.5.2 High-Birefringence Fibers (p. 240)
  • 6.5.3 Soliton-Dragging Logic Gates (p. 243)
  • 6.5.4 Vector Solitons (p. 244)
  • 6.6 Random Birefringence (p. 246)
  • 6.6.1 Polarization-Mode Dispersion (p. 246)
  • 6.6.2 Polarization State of Solitons (p. 248)
  • Problems (p. 252)
  • References (p. 253)
  • 7 Cross-Phase Modulation (p. 260)
  • 7.1 XPM-Induced Nonlinear Coupling (p. 261)
  • 7.1.1 Nonlinear Refractive Index (p. 261)
  • 7.1.2 Coupled NLS Equations (p. 263)
  • 7.1.3 Propagation in Birefringent Fibers (p. 264)
  • 7.2 XPM-Induced Modulation Instability (p. 265)
  • 7.2.1 Linear Stability Analysis (p. 265)
  • 7.2.2 Experimental Results (p. 268)
  • 7.3 XPM-Paired Solitons (p. 270)
  • 7.3.1 Bright-Dark Soliton Pair (p. 270)
  • 7.3.2 Bright-Gray Soliton Pair (p. 272)
  • 7.3.3 Other Soliton Pairs (p. 272)
  • 7.4 Spectral and Temporal Effects (p. 274)
  • 7.4.1 Asymmetric Spectral Broadening (p. 275)
  • 7.4.2 Asymmetric Temporal Changes (p. 281)
  • 7.4.3 Higher-Order Nonlinear Effects (p. 284)
  • 7.5 Applications of XPM (p. 286)
  • 7.5.1 XPM-Induced Pulse Compression (p. 286)
  • 7.5.2 XPM-Induced Optical Switching (p. 289)
  • 7.5.3 XPM-Induced Nonreciprocity (p. 290)
  • Problems (p. 293)
  • References (p. 294)
  • 8 Stimulated Raman Scattering (p. 298)
  • 8.1 Basic Concepts (p. 298)
  • 8.1.1 Raman-Gain Spectrum (p. 299)
  • 8.1.2 Raman Threshold (p. 300)
  • 8.1.3 Coupled Amplitude Equations (p. 304)
  • 8.2 Quasi-Continuous SRS (p. 306)
  • 8.2.1 Single-Pass Raman Generation (p. 306)
  • 8.2.2 Raman Fiber Lasers (p. 309)
  • 8.2.3 Raman Fiber Amplifiers (p. 312)
  • 8.2.4 Raman-Induced Crosstalk (p. 318)
  • 8.3 SRS with Short Pump Pulses (p. 320)
  • 8.3.1 Pulse-Propagation Equations (p. 320)
  • 8.3.2 Nondispersive Case (p. 321)
  • 8.3.3 Effects of GVD (p. 324)
  • 8.3.4 Experimental Results (p. 327)
  • 8.3.5 Synchronously Pumped Raman Lasers (p. 332)
  • 8.4 Soliton Effects (p. 333)
  • 8.4.1 Raman Solitons (p. 334)
  • 8.4.2 Raman Soliton Lasers (p. 339)
  • 8.4.3 Soliton-Effect Pulse Compression (p. 341)
  • 8.5 Effect of Four-Wave Mixing (p. 343)
  • Problems (p. 345)
  • References (p. 346)
  • 9 Stimulated Brillouin Scattering (p. 355)
  • 9.1 Basic Concepts (p. 355)
  • 9.1.1 Physical Process (p. 356)
  • 9.1.2 Brillouin-Gain Spectrum (p. 357)
  • 9.2 Quasi-CW SBS (p. 359)
  • 9.2.1 Coupled Intensity Equations (p. 360)
  • 9.2.2 Brillouin Threshold (p. 360)
  • 9.2.3 Gain Saturation (p. 362)
  • 9.2.4 Experimental Results (p. 364)
  • 9.3 Dynamic Aspects (p. 367)
  • 9.3.1 Coupled Amplitude Equations (p. 367)
  • 9.3.2 Relaxation Oscillations (p. 368)
  • 9.3.3 Modulation Instability and Chaos (p. 371)
  • 9.3.4 Transient Regime (p. 373)
  • 9.4 Brillouin Fiber Lasers (p. 375)
  • 9.4.1 CW Operation (p. 375)
  • 9.4.2 Pulsed Operation (p. 377)
  • 9.5 SBS Applications (p. 380)
  • 9.5.1 Brillouin Fiber Amplifiers (p. 380)
  • 9.5.2 Fiber Sensors (p. 383)
  • Problems (p. 383)
  • References (p. 384)
  • 10 Parametric Processes (p. 389)
  • 10.1 Origin of Four-Wave Mixing (p. 389)
  • 10.2 Theory of Four-Wave Mixing (p. 392)
  • 10.2.1 Coupled Amplitude Equations (p. 392)
  • 10.2.2 Approximate Solution (p. 394)
  • 10.2.3 Effect of Phase Matching (p. 396)
  • 10.2.4 Ultrafast FWM (p. 397)
  • 10.3 Phase-Matching Techniques (p. 399)
  • 10.3.1 Physical Mechanisms (p. 399)
  • 10.3.2 Phase Matching in Multimode Fibers (p. 400)
  • 10.3.3 Phase Matching in Single-Mode Fibers (p. 404)
  • 10.3.4 Phase Matching in Birefringent Fibers (p. 408)
  • 10.4 Parametric Amplification (p. 412)
  • 10.4.1 Gain and Bandwidth (p. 412)
  • 10.4.2 Pump Depletion (p. 414)
  • 10.4.3 Parametric Amplifiers (p. 416)
  • 10.4.4 Parametric Oscillators (p. 417)
  • 10.5 FWM Applications (p. 418)
  • 10.5.1 Wavelength Conversion (p. 419)
  • 10.5.2 Phase Conjugation (p. 420)
  • 10.5.3 Squeezing (p. 422)
  • 10.5.4 Supercontinuum Generation (p. 424)
  • 10.6 Second-Harmonic Generation (p. 427)
  • 10.6.1 Experimental Results (p. 427)
  • 10.6.2 Physical Mechanism (p. 429)
  • 10.6.3 Simple Theory (p. 431)
  • 10.6.4 Quasi-Phase-Matching Technique (p. 434)
  • Problems (p. 436)
  • References (p. 437)
  • Appendix A Decibel Units (p. 445)
  • Appendix B Nonlinear Refractive Index (p. 447)
  • Appendix C Acronyms (p. 454)
  • Index (p. 457)

Powered by Koha