MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Microstructural characterization of materials / David Brandon and Wayne D. Kaplan.

By: Brandon, D. G.
Contributor(s): Kaplan, Wayne D.
Material type: materialTypeLabelBookPublisher: Chichester : Wiley, c1999Description: xiii, 409 p. : ill. (some col.) ; 23 cm. + pbk.ISBN: 0471985015; 0471985023 .Subject(s): Materials -- Microscopy | MicrostructureDDC classification: 620.11299
Contents:
The concept of microstructure -- Diffraction analysis of crystal structure -- Optical microscopy -- Electron microscopy -- Microanalysis in electron microscopy -- Chemical analysis of surface composition -- Quantitative analysis of microstructure.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 620.11299 (Browse shelf(Opens below)) 1 Available 00100225
General Lending MTU Bishopstown Library Lending 620.11299 (Browse shelf(Opens below)) 1 Available 00070922
Total holds: 0

Enhanced descriptions from Syndetics:

Microstructural Characterization of Materials David Brandon and Wayne D. Kaplan Technion, Israel Institute of Technology Israel The internal microstructure and the microstructural features of materials are of key importance when analysing a material for a given engineering application. In specifying the internal microstructure of a material the chemistry, the crystallography, and the structural morphology need to be considered. For each of these aspects, there are three equally important stages of investigation - specimen preparation, image observation and recording, and the analysis and interpretation of recorded data. Microstructural Characterization of Matenals is an integrated treatment of the science of microstructural characterization which emphasizes the interaction of the specimen with the radiation used to probe the microstructure. The three main aspects of microstructural morphology, phase identification and crystallography, and microanalysis of the chemical composition are all covered in detail. Following an introductory chapter, the principal methods of characterization which are commonly available in a well-equipped laboratory are treated in full. These include diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques. Microstructural Characterization of Materials will be of great value to both undergraduate and graduate students and includes suitable problems for students exercises. More advanced researchers will also find it highly useful as a general reference source.

Includes bibliographical references and index.

The concept of microstructure -- Diffraction analysis of crystal structure -- Optical microscopy -- Electron microscopy -- Microanalysis in electron microscopy -- Chemical analysis of surface composition -- Quantitative analysis of microstructure.

Table of contents provided by Syndetics

  • Preface (p. xi)
  • 1 The Concept of Microstructure (p. 1)
  • 1.1 Microstructural Features (p. 7)
  • 1.1.1 Structure-Property Relationships (p. 7)
  • 1.1.2 Microstructural Scale (p. 11)
  • 1.1.2.1 The Visually Observable (p. 12)
  • 1.1.2.2 'With the Aid of the Optical Microscope' (p. 14)
  • 1.1.2.3 Electron Microscopy (p. 14)
  • 1.1.2.4 'Seeing Atoms' (p. 16)
  • 1.1.3 Microstructural Parameters (p. 19)
  • 1.1.3.1 Grain Size (p. 20)
  • 1.1.3.2 Dislocations and Dislocation Density (p. 22)
  • 1.1.3.3 Phase Volume Fraction (p. 23)
  • 1.2 Crystallography and Crystal Structure (p. 24)
  • 1.2.1 Interatomic Bonding in Solids (p. 25)
  • 1.2.1.1 Ionic Bonding (p. 27)
  • 1.2.1.2 Covalent Bonding (p. 28)
  • 1.2.1.3 Metals and Semiconductors (p. 29)
  • 1.2.1.4 Polarization Forces (p. 30)
  • 1.2.2 Crystalline and Amorphous Phases (p. 31)
  • 1.2.3 The Crystal Lattice (p. 31)
  • 1.2.3.1 Unit Cells and Point Lattices (p. 32)
  • 1.2.3.2 Space Groups (p. 33)
  • 1.2.3.3 Miller Indices and Unit Vectors (p. 41)
  • 1.2.3.4 The Stereographic Projection (p. 44)
  • Summary (p. 49)
  • Bibliography (p. 51)
  • Worked Examples (p. 51)
  • Problems (p. 56)
  • 2 Diffraction Analysis of Crystal Structure (p. 59)
  • 2.1 Scattering of Radiation by Crystals (p. 60)
  • 2.1.1 The Laue Equations and Bragg's Law (p. 61)
  • 2.1.2 Allowed and Forbidden Reflections (p. 63)
  • 2.2 Reciprocal Space (p. 65)
  • 2.2.1 The Limiting Sphere Construction (p. 66)
  • 2.2.2 Vector Representation of Bragg's Law (p. 66)
  • 2.2.3 The Reciprocal Lattice (p. 67)
  • 2.2.3.1 The Reciprocal Unit Cell (p. 67)
  • 2.3 X-Ray Diffraction Methods (p. 69)
  • 2.3.1 The X-Ray Diffractometer (p. 70)
  • 2.3.2 Powder Diffraction--Particles and Polycrystals (p. 79)
  • 2.3.3. Single-Crystal Laue Diffraction (p. 82)
  • 2.3.4 Rotating-Single Crystal Methods (p. 84)
  • 2.4 Diffraction Analysis (p. 85)
  • 2.4.1 Atomic Scattering Factors (p. 85)
  • 2.4.2 Scattering by the Unit Cell (p. 86)
  • 2.4.3 The Structure Factor in the Complex Plane (p. 87)
  • 2.4.4 Interpretation of Diffracted Intensities (p. 89)
  • 2.4.5 Errors and Assumptions (p. 91)
  • 2.5 Electron Diffraction (p. 97)
  • 2.5.1 Wave Properties of Electrons (p. 97)
  • 2.5.1.1 The Limiting Sphere for an Electron Beam (p. 99)
  • 2.5.2 Ring Patterns, Spot Patterns and Laue Zones (p. 101)
  • 2.5.3 Kikuchi Patterns and their Interpretation (p. 103)
  • Summary (p. 106)
  • Bibliography (p. 109)
  • Worked Examples (p. 109)
  • Problems (p. 120)
  • 3 Optical Microscopy (p. 123)
  • 3.1 Geometrical Optics (p. 125)
  • 3.1.1 Optical Image Formation (p. 125)
  • 3.1.2 Resolution in the Optical Microscope (p. 129)
  • 3.1.2.1 Point-Source Abbe Image (p. 130)
  • 3.1.2.2 Imaging a Diffraction Grating (p. 130)
  • 3.1.2.3 Resolution and Numerical Aperture (p. 131)
  • 3.1.3 Depth of Field and Depth of Focus (p. 133)
  • 3.2 Construction of the Microscope (p. 134)
  • 3.2.1 Light Sources and Condenser Systems (p. 134)
  • 3.2.2 The Specimen Stage (p. 136)
  • 3.2.3 Selection of Objective Lenses (p. 137)
  • 3.2.4 Image Observation and Recording (p. 138)
  • 3.2.4.1 Monocular and Binocular Viewing (p. 139)
  • 3.2.4.2 Photographic Recording (p. 140)
  • 3.2.4.3 Television Cameras and Digital Recording (p. 141)
  • 3.3 Specimen Preparation (p. 142)
  • 3.3.1 Sampling and Sectioning (p. 142)
  • 3.3.2 Mounting and Grinding (p. 143)
  • 3.3.3 Polishing and Etching Methods (p. 145)
  • 3.3.3.1 Steels and Non-Ferrous Alloys (p. 147)
  • 3.3.3.2 Pure Metals and Soft Alloys (p. 147)
  • 3.3.3.3 Semiconductors, Ceramics and Intermetallics (p. 147)
  • 3.3.3.4 Composite Materials (p. 148)
  • 3.4 Image Contrast (p. 148)
  • 3.4.1 Reflection and Absorption of Light (p. 148)
  • 3.4.2 Bright-Field and Dark-Field Image Contrast (p. 150)
  • 3.4.3 Optical Anisotropy and Polarized Light (p. 152)
  • 3.4.3.1 Polarization of Light and its Analysis (p. 153)
  • 3.4.3.2 The 45[degree] Optical Wedge (p. 154)
  • 3.4.3.3 White Light and the Sensitive Tint Plate (p. 156)
  • 3.4.3.4 Reflection of Polarized Light (p. 156)
  • 3.4.4 Phase Contrast Microscopy (p. 158)
  • 3.4.5 Interference Contrast and Interference Microscopy (p. 160)
  • 3.4.5.1 Two-Beam Interference (p. 161)
  • 3.4.5.2 Systems for Interference Microscopy (p. 162)
  • 3.4.5.3 Multi-Beam Interference Methods (p. 163)
  • 3.4.5.4 Surface Topology and Interference Fringes (p. 165)
  • 3.5 Resolution, Contrast and Image Interpretation (p. 166)
  • Summary (p. 167)
  • Bibliography (p. 168)
  • Worked Examples (p. 173)
  • Problems (p. 174)
  • 4 Electron Microscopy (p. 177)
  • 4.1 Basic Principles (p. 180)
  • 4.1.1 Wave Properties of Electrons (p. 181)
  • 4.1.1.1 Electrostatic and Electromagnetic Focusing (p. 181)
  • 4.1.1.2 Thick and Thin Electromagnetic Lenses (p. 183)
  • 4.1.1.3 Resolution and Focusing (p. 183)
  • 4.1.2 Resolution Limitations and Lens Aberrations (p. 183)
  • 4.1.2.1 Diffraction-Limited Resolution (p. 184)
  • 4.1.2.2 Spherical Aberration (p. 184)
  • 4.1.2.3 Chromatic Aberration (p. 185)
  • 4.1.2.4 Lens Astigmatism (p. 186)
  • 4.1.3 Transmission and Scanning Electron Microscopy Compared (p. 187)
  • 4.1.3.1 The Optics of Image Formation (p. 187)
  • 4.1.3.2 Depth of Field and Depth of Focus (p. 187)
  • 4.1.3.3 Specimen Shape and Dimensions (p. 188)
  • 4.1.3.4 Vacuum Requirements (p. 188)
  • 4.1.3.5 Voltage and Current Stability (p. 189)
  • 4.2 Transmission Electron Microscopy (p. 189)
  • 4.2.1 Specimen Preparation (p. 190)
  • 4.2.1.1 Mechanical Thinning (p. 191)
  • 4.2.1.2 Electrochemical Thinning (p. 192)
  • 4.2.1.3 Ion Milling (p. 193)
  • 4.2.1.4 Sputter Coating and Carbon Coating (p. 195)
  • 4.2.1.5 Replica Methods (p. 195)
  • 4.2.1.6 Preparing Cross-Sections (p. 197)
  • 4.2.2 The Origin of Contrast (p. 197)
  • 4.2.2.1 Mass-Thickness Contrast (p. 199)
  • 4.2.2.2 Diffraction Contrast and Crystal Lattice Defects (p. 200)
  • 4.2.2.3 Phase Contrast and Lattice Imaging (p. 202)
  • 4.2.3 Kinematic Interpretation of Diffraction Contrast (p. 210)
  • 4.2.3.1 Kinematic Theory of Electron Diffraction (p. 210)
  • 4.2.3.2 The Amplitude-Phase Diagram (p. 210)
  • 4.2.3.3 Contrast from Lattice Defects (p. 212)
  • 4.2.3.4 Stacking Faults and Anti-Phase Boundaries (p. 213)
  • 4.2.3.5 Edge and Screw Dislocations (p. 215)
  • 4.2.3.6 Point Dilatations and Coherency Strains (p. 216)
  • 4.2.4 Dynamic Diffraction and Absorption Effects (p. 218)
  • 4.2.4.1 Stacking Faults Revisited (p. 220)
  • 4.2.4.2 Quantitative Analysis of Contrast (p. 222)
  • 4.2.5 Lattice Imaging at High Resolution (p. 222)
  • 4.2.5.1 The Image and the Contrast Transfer Function (p. 223)
  • 4.2.5.2 Computer Simulation of Lattice Images (p. 223)
  • 4.2.5.3 Lattice Image Interpretation (p. 224)
  • 4.3 Scanning Electron Microscopy (p. 226)
  • 4.3.1 Electron Beam-Specimen Interactions (p. 227)
  • 4.3.1.1 Beam-Focusing Conditions (p. 228)
  • 4.3.1.2 Inelestic Scattering and Energy Losses (p. 229)
  • 4.3.2 Electron Excitation of X-Rays (p. 229)
  • 4.3.2.1 Characteristic X-Ray Images (p. 233)
  • 4.3.3 Back-Scattered Electrons (p. 238)
  • 4.3.3.1 Image Contrast in the Back-Scattered Image (p. 239)
  • 4.3.4 Secondary Electron Emission (p. 239)
  • 4.3.4.1 Factors Affecting Secondary Emission (p. 240)
  • 4.3.4.2 Secondary Electron Image Contrast (p. 242)
  • 4.3.5 Alternative Imaging Modes (p. 242)
  • 4.3.5.1 Cathodoluminescence (p. 242)
  • 4.3.5.2 Electron Beam Image Current (p. 243)
  • 4.3.6 Specimen Preparation and Toplogy (p. 243)
  • 4.3.6.1 Sputter-Coating and Contrast Enhancement (p. 243)
  • 4.3.6.2 Fractography and Failure Analysis (p. 244)
  • 4.3.6.3 Stereoscopic Imaging (p. 246)
  • 4.3.6.4 Parallax Measurements (p. 248)
  • Summary (p. 250)
  • Bibliography (p. 253)
  • Worked Examples (p. 253)
  • Problems (p. 271)
  • 5 Microanalysis in Electron Microscopy (p. 273)
  • 5.1 X-Ray Microanalysis (p. 273)
  • 5.1.1 Excitation of Characteristic X-Rays (p. 274)
  • 5.1.1.1 Signal-to-Noise Ratio (p. 275)
  • 5.1.1.2 Resolution and Detection Limit (p. 277)
  • 5.1.2 Detection of Characteristic X-Rays (p. 277)
  • 5.1.2.1 Wavelength-Dispersive Spectrometry (p. 278)
  • 5.1.2.2 Energy-Dispersive Spectrometry (p. 279)
  • 5.1.2.3 Detection of Long Wavelengths (p. 279)
  • 5.1.3 Quantitative Analysis of Composition (p. 281)
  • 5.1.3.1 Atomic Number and Absorption Corrections (p. 283)
  • 5.1.3.2 The Fluorescence Correction (p. 286)
  • 5.1.3.3 Microanalysis of Thin Films (p. 288)
  • 5.2 Electron Energy-Loss Spectroscopy (p. 292)
  • 5.2.1 The Electron Energy-Loss Spectrum (p. 293)
  • 5.2.2 Limits of Detection and Resolution (p. 294)
  • 5.2.3 Quantitative Electron Energy-Loss Analysis (p. 297)
  • 5.2.3.1 Parallel Electron Energy-Loss Spectroscopy (p. 298)
  • 5.2.4 Near-Edge Fine-Structure Information (p. 299)
  • 5.2.5 Far-Edge Fine-Structure Information (p. 299)
  • Summary (p. 301)
  • Bibliography (p. 304)
  • Worked Examples (p. 304)
  • Problems (p. 313)
  • 6 Chemical Analysis of Surface Composition (p. 315)
  • 6.1 X-Ray Photoelectron Spectroscopy (p. 316)
  • 6.1.1 Depth Discrimination (p. 317)
  • 6.1.2 Chemical Binding States (p. 320)
  • 6.1.3 Instrumental Requirements (p. 321)
  • 6.1.4 Applications (p. 323)
  • 6.2 Auger Electron Analysis (p. 323)
  • 6.2.1 Spatial Resolution and Depth Discrimination (p. 325)
  • 6.2.2 Recording and Presentation of Spectra (p. 326)
  • 6.2.3 Identification of Chemical Binding States (p. 327)
  • 6.2.4 Quantitative Auger Analysis (p. 327)
  • 6.2.5 Depth Profiling (p. 329)
  • 6.2.6 Auger Imaging (p. 330)
  • 6.3 Secondary-Ion Mass Spectrometry (p. 332)
  • 6.3.1 Sensitivity and Resolution (p. 334)
  • 6.3.2 Calibration and Quantitative Analysis (p. 335)
  • 6.3.3 SIMS Imaging (p. 335)
  • Summary (p. 337)
  • Bibliography (p. 339)
  • Worked Examples (p. 339)
  • Problems (p. 343)
  • 7 Quantitative Analysis of Microstructure (p. 345)
  • 7.1 Basic Stereological Concepts (p. 346)
  • 7.1.1 Isotropy and Anisotropy (p. 346)
  • 7.1.2 Homogeneity and Inhomogeneity (p. 348)
  • 7.1.3 Sampling and Sectioning (p. 350)
  • 7.1.4 Statistics and Probability (p. 353)
  • 7.2 Accessible and Inaccessible Parameters (p. 354)
  • 7.2.1 Accessible Parameters (p. 355)
  • 7.2.1.1 Phase Volume Fraction (p. 355)
  • 7.2.1.2 Particle Size and Grain Size (p. 358)
  • 7.2.2 Inaccessible Parameters (p. 363)
  • 7.2.2.1 Aspect Ratios (p. 363)
  • 7.2.2.2 Size and Orientation Distributions (p. 364)
  • 7.3 Optimizing Accuracy (p. 366)
  • 7.3.1 Sample Size and Counting Time (p. 368)
  • 7.3.2 Resolution and Detection Errors (p. 371)
  • 7.3.3 Sample Thickness Corrections (p. 373)
  • 7.3.4 Observer Bias (p. 375)
  • 7.3.5 The Case of Dislocation Density (p. 376)
  • 7.4 Automated Image Analysis (p. 377)
  • 7.4.1 Digital Image Recording (p. 379)
  • 7.4.2 Statistical Significance and Microstructural Relevance (p. 381)
  • Summary (p. 381)
  • Bibliography (p. 383)
  • Worked Examples (p. 383)
  • Problems (p. 396)
  • Appendices (p. 399)
  • Index (p. 403)

Powered by Koha