MTU Cork Library Catalogue

The development of new molecular tools to detect Mycobacterium avium subspecies paratuberculosis from a bovine faecel environment by real-time PCR / Marcel de Kruijf.

By: Kruijf, Marcel de [author].
Material type: materialTypeLabelBookSeries: Ph. D - Biological Sciences.Publisher: Cork : Cork Institute of Technology, 2017Description: 201 pages : illustrations (some color), map ; 30 cm.Content type: text Media type: unmediated Carrier type: volumeSubject(s): Mycobacterium avium paratuberculosis | Polymerase chain reaction -- Diagnostic use | Molecular epidemiology | Communicable diseases -- Diagnosis | DNA microarrays -- Diagnostic useDDC classification: THESES PRESS Dissertation note: Thesis Cork Institute of Technology, 2017.
List(s) this item appears in: PhD Theses
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Reference MTU Bishopstown Library Thesis THESES PRESS (Browse shelf(Opens below)) Reference 00181150
Total holds: 0

The slow-growing intracellular pathogen Mycobacterium Avium subspecies Paratuberculosos (MAP) causes Johne's Disease in domesticated and wild ruminants. Johne's disease inflicts severe annual economic losses to the dairy industry worldwide. This thesis is divided into five chapters that consist of a literature review chapter and four experimental chapters focusing on MAP strain genotyping and the development of novel molecular MAP detection tools using real-time PCR. Chapter 1 describes published information regarding MAP characteristics, Johne's disease, MAP genomics, available MAP detection methods, MAP epidemiology and genotyping. To efficiently control and monitor MAP infection, molecular typing of MAP strains provides extensive knowledge regarding the source and genetic diversity of MAP within a geographic location. Knowledge regarding MAP genotypes within Ireland is limited and therefore, a large collection of MAP isolates from 53 herds across the Republic of Ireland were genotyped using the MIRU-VNTR technique and described in chapter 2. Rapid detection of MAP from faeces using real-time PCR is crucial to halt the infectious spread within herds. MAP- specific multi-copy elements are attractive and sensitive molecular targets for real-time PCR assays to detect MAP from faeces. The multi-copy IS_MAP04 has never previously been evaluated as a potential novel target in MAP diagnostics. This evaluation is described in chapter 3. A further MAP-specific molecular target has been investigated and described in chapter 4. The truncation present in the mycobactin cluster within MAP was used as a novel MAP-specific target in real-time PCR assays to detect and conform MAP from faeces. The elimination of false-negative detection results is another crucial aspect in molecular MAP diagnostics. Chapter 5 describes the development of two novel MAP DNA extraction and real-time PCR internal controls using Mycobacterium smegmatis as a model mycobacterial strain. These developed internal controls could aide in the elimination of false-negative MAP detection results from faeces - (Abstract)

Thesis Cork Institute of Technology, 2017.

Includes bibliographical references.

Powered by Koha