MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Optical fiber sensors / [edited] by John Dakin and Brian Culshaw.

Contributor(s): Dakin, John, 1947- | Culshaw, B.
Material type: materialTypeLabelBookSeries: Artech House telecommunications library.Publisher: Boston : Artech House, c1988-c1997Description: 4 v. : ill. ; 24 cm.ISBN: 0890063176; 0890063761 ; 0890069328 ; 0890069409 .Subject(s): Optical fibers | Optical fiber detectorsDDC classification: 620.0044
Contents:
Introduction: Sensor systems and fiber optics / B. Culshaw and J. P. Dakin -- Basic concepts of optical fiber sensors / B. Culshaw -- Essential optics / A. J. Rogers -- Optical detectors and receivers / B. T. Debney and A. C. Carter -- Optical sources / A. M. Yurek and A. Dandridge -- Materials interactions in optical fiber sensors / A. M. Smith -- Fiber optic components / M. J. F. Digonnet and B. Y. Kim -- Optical fibers for sensors / W. A. Gambling and S. B. Poole -- Integrated optics for sensors / R. Th. Kersten.
Holdings
Item type Current library Call number Copy number Status Date due Barcode Item holds
General Lending MTU Bishopstown Library Lending 620.0044 (Browse shelf(Opens below)) 1 Available 00012056
Total holds: 0

Enhanced descriptions from Syndetics:

The first of a two-volume set on optical fiber sensors covers the underlying principles and base-line technology, providing detailed tutorials on basic concepts, essential optics, detectors, optical sources, materials, components, fibers and integrated optics. The second volume will cover systems an

Includes bibliographical references and indexes.

Introduction: Sensor systems and fiber optics / B. Culshaw and J. P. Dakin -- Basic concepts of optical fiber sensors / B. Culshaw -- Essential optics / A. J. Rogers -- Optical detectors and receivers / B. T. Debney and A. C. Carter -- Optical sources / A. M. Yurek and A. Dandridge -- Materials interactions in optical fiber sensors / A. M. Smith -- Fiber optic components / M. J. F. Digonnet and B. Y. Kim -- Optical fibers for sensors / W. A. Gambling and S. B. Poole -- Integrated optics for sensors / R. Th. Kersten.

Table of contents provided by Syndetics

  • Preface (p. xi)
  • Authors' Biographies (p. xiii)
  • Chapter 1 Introduction: Sensor Systems and Fiber Optics (p. 1)
  • Chapter 2 Basic Concepts of Optical Fiber Sensors (p. 9)
  • 2.1 Introduction (p. 9)
  • 2.1.1 Optical fiber sensors--what are they? (p. 9)
  • 2.1.2 Optical fiber sensors--why use them? (p. 11)
  • 2.1.3 Optical fiber sensor response functions (p. 11)
  • 2.2 Optical fiber sensor components (p. 12)
  • 2.2.1 Modulators (p. 12)
  • 2.2.2 The measurand interface (p. 15)
  • 2.2.3 The optical fiber link (p. 16)
  • 2.2.4 Fiber optic components and other micro-optics (p. 18)
  • 2.2.5 Optical sources for sensors (p. 19)
  • 2.2.6 Optical signal detection (p. 20)
  • 2.2.7 Signal processing (p. 20)
  • 2.3 System properties of optical fiber sensors (p. 21)
  • 2.4 Concluding comments (p. 22)
  • Bibliography (p. 23)
  • Chapter 3 Essential Optics (p. 25)
  • 3.1 The nature of light (p. 25)
  • 3.1.1 Historical sketch (p. 25)
  • 3.1.2 Electromagnetic waves (p. 26)
  • 3.1.3 Polarization (p. 28)
  • 3.1.4 The electromagnetic spectrum (p. 30)
  • 3.2 Emission and absorption of light (p. 31)
  • 3.2.1 The elementary processes (p. 31)
  • 3.2.2 Elements of laser action (p. 32)
  • 3.2.3 Photon statistics (p. 36)
  • 3.3 Propagation of light (p. 38)
  • 3.3.1 Fresnel's equations (p. 38)
  • 3.3.2 Reflection and refraction (p. 38)
  • 3.3.3 Total internal reflection (p. 44)
  • 3.3.4 Interference of light (p. 47)
  • 3.3.5 Light waveguiding (p. 48)
  • 3.4 Interference and diffraction (p. 57)
  • 3.4.1 Introduction (p. 57)
  • 3.4.2 Interference (p. 57)
  • 3.4.3 Diffraction (p. 64)
  • 3.4.4 Gaussian beams and stable optical resonators (p. 68)
  • 3.5 Coherence (p. 70)
  • 3.5.1 Introduction (p. 70)
  • 3.5.2 Measure of coherence (p. 72)
  • 3.5.3 Wiener-Khinchin theorem (p. 75)
  • 3.5.4 Dual-beam interference (p. 76)
  • 3.6 Polarization optics (p. 80)
  • 3.6.1 The polarization ellipse (p. 80)
  • 3.6.2 Applications of polarization optics (p. 85)
  • 3.7 Interaction of light with matter (p. 88)
  • 3.7.1 General (p. 88)
  • 3.7.2 Classical theory of propagation in uniform dielectric media (p. 88)
  • 3.7.3 Dispersion (p. 92)
  • 3.7.4 Luminescence (p. 94)
  • 3.7.5 Nonlinear optics (p. 96)
  • 3.8 Photodetection (p. 100)
  • 3.9 Conclusion (p. 103)
  • Appendix (p. 103)
  • References and bibliography (p. 105)
  • Chapter 4 Optical Detectors and Receivers (p. 107)
  • 4.1 Introduction (p. 107)
  • 4.2 Basic detection principles (p. 108)
  • 4.2.1 Intensity modulation and direct detection (p. 108)
  • 4.2.2 Coherent detection (p. 112)
  • 4.3 Materials for detectors (p. 112)
  • 4.4 Detector types (p. 114)
  • 4.4.1 Detectors without internal gain: the p-n and PIN junction diodes (p. 114)
  • 4.4.2 The avalanche photodiode (p. 118)
  • 4.4.3 The photoconductor (p. 124)
  • 4.5 Detector technology: present and future (p. 126)
  • 4.6 Direct detection receivers (p. 131)
  • 4.7 Coherent detection (p. 142)
  • 4.8 Conclusions (p. 147)
  • Acknowledgments (p. 147)
  • References (p. 147)
  • Chapter 5 Optical Sources (p. 151)
  • 5.1 Introduction (p. 151)
  • 5.1.1 Source requirements (p. 151)
  • 5.1.2 The emission process (p. 151)
  • 5.1.3 Electrical properties and drive circuitry (p. 153)
  • 5.1.4 Modulation behavior of semiconductor diode light sources (p. 154)
  • 5.2 Light-emitting diodes (p. 156)
  • 5.2.1 Device construction (p. 156)
  • 5.2.2 Optical properties (p. 160)
  • 5.2.3 Operation of light-emitting diodes and superluminescent diodes in sensors (p. 163)
  • 5.3 Semiconductor diode lasers (p. 164)
  • 5.3.1 Laser structures and types (p. 164)
  • 5.3.2 Single-mode operation (p. 166)
  • 5.3.3 Optical properties (p. 169)
  • 5.3.4 Noise and noise reduction (p. 171)
  • 5.3.5 Operation in sensors (p. 183)
  • 5.4 Other optical sources (p. 184)
  • 5.4.1 Gas lasers (p. 184)
  • 5.4.2 Fiber lasers (p. 185)
  • 5.4.3 Glass and crystal host lasers (p. 185)
  • 5.4.4 White light sources (p. 185)
  • References (p. 185)
  • Chapter 6 Materials Interactions in Optical Fiber Sensors (p. 189)
  • 6.1 Introduction (p. 189)
  • 6.2 Extrinsic, intrinsic and evanescent sensors (p. 189)
  • 6.3 Absorption (p. 190)
  • 6.4 The use of scattering in absorption measurements (p. 193)
  • 6.4.1 Membrane sensors (p. 193)
  • 6.4.2 Scattering cell sensors (p. 195)
  • 6.5 Fluorescence (p. 196)
  • 6.6 Phosphorescence (p. 199)
  • 6.7 The evanescent field (p. 200)
  • 6.8 Surface plasmon resonance (p. 203)
  • 6.9 Materials aspects of complete fiber systems (p. 204)
  • 6.9.1 Choice of fiber (p. 205)
  • 6.9.2 Choice of sensing material (p. 206)
  • 6.10 Conclusion (p. 207)
  • References (p. 207)
  • Chapter 7 Fiber Optic Components (p. 209)
  • 7.1 Introduction (p. 209)
  • 7.2 Fiber couplers (p. 210)
  • 7.2.1 Coupler principle (p. 210)
  • 7.2.2 Fiber couplers: description (p. 212)
  • 7.2.3 Performance comparison (p. 217)
  • 7.2.4 Polarization effects in couplers (p. 217)
  • 7.3 Wavelength-division multiplexing and filters (p. 219)
  • 7.3.1 Wavelength-division multiplexing in directional couplers (p. 219)
  • 7.3.2 Wavelength filters (p. 221)
  • 7.4 Polarization controllers (p. 223)
  • 7.5 Fiber polarizers (p. 225)
  • 7.6 Phase modulators (p. 228)
  • 7.6.1 PZT ring phase modulators (p. 230)
  • 7.6.2 Fibers with coaxial piezoelectric transducers (p. 232)
  • 7.6.3 Fibers with piezoelectric jackets (p. 232)
  • 7.7 Frequency shifters (p. 234)
  • 7.7.1 Principles (p. 234)
  • 7.7.2 Birefringent fiber frequency shifters (p. 235)
  • 7.7.3 Two-mode fiber frequency shifter (p. 237)
  • 7.7.4 Serrodyne frequency shifter (p. 238)
  • 7.8 Amplifiers and sources (p. 238)
  • 7.8.1 Nonlinear amplifiers and sources (p. 239)
  • 7.8.2 Evanescent field amplifiers (p. 240)
  • 7.8.3 Rare-earth-doped fibers (p. 240)
  • 7.9 Conclusions (p. 241)
  • Appendix (p. 242)
  • References (p. 243)
  • Chapter 8 Optical Fibers for Sensors (p. 249)
  • 8.1 Introduction (p. 249)
  • 8.2 Fibers with modified polarization properties (p. 250)
  • 8.2.1 Introduction to birefringence (p. 250)
  • 8.2.2 Fibers with negligible birefringence (p. 251)
  • 8.2.3 Linearly birefringent fibers (p. 252)
  • 8.2.4 Circularly birefringent fibers (p. 259)
  • 8.2.5 Elliptically birefringent fibers (p. 260)
  • 8.3 Evanescent field devices (p. 262)
  • 8.3.1 Introduction (p. 262)
  • 8.3.2 D-fibers (p. 262)
  • 8.3.3 Hollow-section fibers (p. 262)
  • 8.4 Fibers made from modified materials (p. 264)
  • 8.4.1 Introduction (p. 264)
  • 8.4.2 Multicomponent glass fibers (p. 265)
  • 8.4.3 Fibers doped with rare earths (p. 265)
  • 8.5 Conclusions (p. 273)
  • Acknowledgments (p. 273)
  • References (p. 273)
  • Chapter 9 Integrated Optics for Sensors (p. 277)
  • 9.1 Introduction (p. 277)
  • 9.2 Fundamentals (p. 278)
  • 9.2.1 Theoretical fundamentals: the slab waveguide (p. 278)
  • 9.2.2 Structures (p. 281)
  • 9.2.3 Theory of strip waveguides (p. 283)
  • 9.2.4 Principal structures (p. 285)
  • 9.2.5 Combined structures (p. 286)
  • 9.2.6 Passive dynamic structures (p. 289)
  • 9.3 Materials (p. 292)
  • 9.4 Technology (p. 293)
  • 9.4.1 Fabrication of glass waveguides (p. 293)
  • 9.4.2 Titanium in-diffusion into LiNbO[subscript 3] (p. 299)
  • 9.4.3 III-V compounds (p. 300)
  • 9.5 Losses (p. 301)
  • 9.6 Processing steps (p. 301)
  • 9.7 Coupling (p. 302)
  • 9.8 Integrated optics circuits in or as sensors (p. 304)
  • 9.8.1 Evanescent field sensor (p. 305)
  • 9.8.2 Integrated optics and the optical gyroscope (p. 307)
  • 9.8.3 Fabry-Perot sensors (p. 309)
  • 9.9 Other applications (p. 311)
  • 9.9.1 Frequency multiplexing (p. 311)
  • 9.9.2 Displacement sensors (p. 312)
  • 9.9.3 Laser Doppler velocimetry (p. 313)
  • 9.10 Outstanding problems (p. 314)
  • 9.11 Conclusions (p. 315)
  • Acknowledgments (p. 315)
  • References (p. 315)
  • Index (p. 319)

Powered by Koha