MTU Cork Library Catalogue

Syndetics cover image
Image from Syndetics

Materials for infrared windows and domes : properties and performance / Daniel C. Harris.

By: Harris, Daniel C, 1948-.
Material type: materialTypeLabelBookPublisher: Bellingham, Wash. : SPIE Optical Engineering Press, [c1999]Description: xi, 415 p. : ill. ; 26 cm.ISBN: 0819434825.Subject(s): Guided missiles -- Optical equipment | Infrared detectors | Noses (Aircraft)DDC classification: 629.12
Contents:
Optical properties of infrared windows -- Optical performance of infrared windows -- Mechanical properties -- Thermal properties -- Fabrication of infrared materials -- Optical coatings -- Erosion and erosion protection -- Proof testing -- Optical-quality CVD diamond.

Enhanced descriptions from Syndetics:

This text provides a comprehensive introduction to infrared-transparent materials for windows and domes that must withstand harsh environmental conditions, such as high-speed flight or high temperature process monitoring. Introductory material in each section makes the book suitable for anyone with a background in science or engineering.

Includes bibliographical references and index.

Optical properties of infrared windows -- Optical performance of infrared windows -- Mechanical properties -- Thermal properties -- Fabrication of infrared materials -- Optical coatings -- Erosion and erosion protection -- Proof testing -- Optical-quality CVD diamond.

Table of contents provided by Syndetics

  • Preface (p. xi)
  • 0. The Heat of the Night and the Dust of the Battlefield (p. 1)
  • 0.1 Electromagnetic spectrum and atmospheric transmission (p. 2)
  • 0.2 Blackbody radiation (p. 3)
  • 0.3 Transmission through rain, snow, fog and dust (p. 6)
  • References (p. 11)
  • 1. Optical Properties of Infrared Windows (p. 12)
  • 1.1 A day in the life of a photon (p. 12)
  • 1.2 Refraction and refractive index (p. 15)
  • 1.2.1 Birefringence (p. 19)
  • 1.2.2 Preference for cubic materials (p. 20)
  • 1.2.3 Reproducibility of the refractive index (p. 22)
  • 1.3 Reflection and transmission (p. 22)
  • 1.3.1 Transmission of an absorbing window (p. 24)
  • 1.3.2 Etalon effect (p. 25)
  • 1.4 Optical constants: n and k (p. 27)
  • 1.5 General behavior of absorption coefficient and refractive index (p. 28)
  • 1.6 Transmission spectra of infrared materials (p. 30)
  • 1.7 Measuring the absorption coefficient (p. 36)
  • 1.7.1 Direct transmittance measurements (p. 36)
  • 1.7.2 Laser calorimetry (p. 37)
  • 1.8 Emissivity (p. 39)
  • 1.9 Effect of temperature on absorption and emission (p. 42)
  • 1.10 Free carrier absorption in semiconductors (p. 46)
  • 1.11 What makes a window midwave or long wave? (p. 47)
  • 1.12 "Two-color" materials (p. 58)
  • References (p. 60)
  • 2. Optical Performance of Infrared Windows (p. 63)
  • 2.1 Resolution (p. 63)
  • 2.2 Scatter (p. 64)
  • 2.3 Modulation transfer function: a measure of imaging quality (p. 68)
  • 2.4 Degradation of infrared sensing by a hot window (p. 71)
  • 2.4.1 Emittance from a hot window (p. 71)
  • 2.4.2 Temperature gradients in windows (p. 74)
  • 2.5 Frequency doubling (p. 76)
  • 2.6 Microwave transmission properties of infrared materials (p. 77)
  • References (p. 81)
  • 3. Mechanical Properties (p. 84)
  • 3.1 Elastic constants (p. 84)
  • 3.2 Measuring the strength of brittle materials (p. 88)
  • 3.2.1 3-point and 4-point flexure tests (p. 89)
  • 3.2.2 Equibiaxial disk flexure test (p. 92)
  • 3.3 Ceramics fracture at pre-existing flaws (p. 94)
  • 3.3.1 Stress concentration by cracks (p. 96)
  • 3.3.2 Strain rate dependence of strength (p. 98)
  • 3.4 Weibull statistics (p. 98)
  • 3.4.1 The Weibull distribution (p. 99)
  • 3.4.2 Safety factors (p. 101)
  • 3.5 Strength scales with area (or volume) under stress (p. 103)
  • 3.6 Strengths of optical ceramics (p. 105)
  • 3.6.1 Strength is not an intrinsic property of a material (p. 106)
  • 3.6.2 Temperature dependence of strength (p. 107)
  • 3.7 Window and dome design (p. 109)
  • 3.7.1 Designing a circular window (p. 109)
  • 3.7.2 Designing a dome (p. 111)
  • 3.8 Hardness and fracture toughness (p. 114)
  • 3.8.1 Relation of strength to fracture toughness and grain size (p. 119)
  • 3.8.2 Temperature dependence of hardness and fracture toughness (p. 121)
  • References (p. 122)
  • 4. Thermal Properties (p. 126)
  • 4.1 Thermal expansion and heat capacity (p. 126)
  • 4.2 Thermal conductivity (p. 128)
  • 4.3 Thermal shock (p. 132)
  • 4.3.1 Hasselman figures of merit (p. 134)
  • 4.3.2 Klein figure of merit for minimum thickness dome (p. 140)
  • 4.3.3 Mach-altitude limits for a dome (p. 141)
  • 4.4 Aerodynamic domes (p. 144)
  • 4.5 Thermal stability of window materials (p. 145)
  • References (p. 148)
  • 5. Fabrication of Infrared Materials (p. 150)
  • 5.1 Classes of infrared materials (p. 150)
  • 5.1.1 Glass-cermaics (p. 153)
  • 5.2 Fabrication of polycrystalline materials by powder processing (p. 155)
  • 5.2.1 Yttria: an example of dome fabrication from a powder (p. 155)
  • 5.2.2 Methods of densifying ceramics: sintering, hot pressing and hot isostatic pressing (p. 159)
  • 5.2.3 Annealing (p. 162)
  • 5.3 Chemical vapor deposition (p. 163)
  • 5.3.1 Zinc sulfide and zinc selenide (p. 163)
  • 5.3.2 Silicon carbide and silicon nitride (p. 167)
  • 5.4 Single-crystal materials (p. 170)
  • 5.4.1 Gallium arsenide, gallium phosphide, germanium and silicon (p. 170)
  • 5.4.2 Sapphire (p. 173)
  • 5.4.3 Hot forging (p. 177)
  • 5.5 Optical finishing (p. 177)
  • 5.5.1 Scratch/dig specifications (p. 180)
  • 5.5.2 Optical polishing (p. 181)
  • 5.6 The effect of surface finish on mechanical strength (p. 183)
  • 5.7 Polymer infrared windows (p. 189)
  • References (p. 191)
  • 6. Optical Coatings (p. 195)
  • 6.1 Antireflection coatings (p. 195)
  • 6.1.1 Moth eye surfaces (p. 199)
  • 6.1.2 Interference fringes for measuring coating thickness (p. 201)
  • 6.1.3 Adherence of coatings (p. 202)
  • 6.1.4 Emittance from coatings (p. 202)
  • 6.1.5 Rugate filters (p. 203)
  • 6.2 Stress in coatings (p. 205)
  • 6.3 Conductive coatings for electromagnetic shielding (p. 207)
  • References (p. 213)
  • 7. Erosion and Erosion Protection (p. 215)
  • 7.1 Rainfall characteristics (p. 218)
  • 7.2 The raindrop impact event (p. 220)
  • 7.3 Raindrop damage threshold velocity (p. 224)
  • 7.3.1 Threshold velocity for fracture or loss of mechanical strength (p. 224)
  • 7.3.2 Threshold velocity for loss of optical transmission or contrast (p. 228)
  • 7.3.3 Threshold velocity for loss of mass (p. 231)
  • 7.4 Rain erosion test facilities (p. 233)
  • 7.4.1 Whirling arm (p. 233)
  • 7.4.2 Single-impact waterjet (p. 235)
  • 7.4.3 Multiple-impact jet apparatus (MIJA) (p. 237)
  • 7.4.4 Single-drop impact testing (p. 240)
  • 7.5 Aerodynamic effects in rain erosion (p. 241)
  • 7.6 Erosion by solid particles (p. 243)
  • 7.6.1 Combined effects of sand and rain (p. 248)
  • 7.7 Effect of angle of incidence on erosion (p. 249)
  • 7.7.1 Waterdrop impact at inclined angles (p. 249)
  • 7.7.2 Sand impact at inclined angles (p. 250)
  • 7.7.3 Comparative erosion testing of materials (p. 250)
  • 7.8 Protective coatings for erosion (p. 252)
  • 7.8.1 Mechanisms of protection by coatings (p. 252)
  • 7.8.2 Diamond-like carbon and germanium-carbon coatings (p. 258)
  • 7.8.3 "Boron phosphide" and other phosphorus-based coatings (p. 259)
  • 7.8.4 "REP" coating (p. 264)
  • 7.8.5 Claddings (p. 266)
  • 7.8.6 Diamond coatings (p. 270)
  • References (p. 273)
  • 8. Proof Testing (p. 280)
  • 8.1 Case study: proof testing of zinc selenide (p. 281)
  • 8.1.1 An example of an unsuccessful proof test (p. 283)
  • 8.2 What is the stress intensity factor? (p. 284)
  • 8.3 Slow crack growth (p. 285)
  • 8.4 The theory of proof testing (p. 290)
  • 8.4.1 How strength changes during a proof test (p. 292)
  • 8.4.2 A theoretical example: proof testing of sapphire (p. 293)
  • 8.5 Designing a proof test for the space shuttle window (p. 295)
  • 8.5.1 Minimum time to failure after a proof test (p. 295)
  • 8.5.2 Crack growth parameters for space shuttle window material (p. 296)
  • 8.5.3 Proof test design (p. 297)
  • 8.6. Fatigue (p. 299)
  • References (p. 300)
  • 9. Optical-Quality CVD Diamond (p. 303)
  • 9.1 What is diamond and how is it made? (p. 304)
  • 9.1.1 Chemical vapor deposition of diamond (p. 306)
  • 9.1.2 The two surfaces of CVD diamond (p. 309)
  • 9.2 Mechanical and thermal properties of diamond (p. 311)
  • 9.2.1 Hardness, toughness and elastic properties (p. 312)
  • 9.2.2 Mechanical strength (p. 313)
  • 9.2.3 Thermal expansion (p. 317)
  • 9.2.4 Thermal conductivity and heat capacity (p. 318)
  • 9.2.5 Commercial grades of CVD diamond (p. 321)
  • 9.3 Optical properties of diamond (p. 321)
  • 9.3.1 Absorption and scatter (p. 322)
  • 9.3.2 Refractive index (p. 327)
  • 9.3.3 Microwave properties of diamond (p. 328)
  • 9.4 Diamond windows and domes (p. 329)
  • 9.4.1 Polishing diamond (p. 330)
  • 9.4.2 Mechanical and erosion performance (p. 332)
  • 9.4.3 Oxidation of diamond (p. 334)
  • 9.4.4 Prospects (p. 336)
  • References (p. 336)
  • Appendix A Physical Constants and Conversion Factors (p. 344)
  • Appendix B Suppliers of Infrared Materials and Sources of Information (p. 346)
  • Appendix C Optical Properties of Infrared Materials (p. 351)
  • C.1 Refractive index, absorption coefficient, and dn/dT (p. 352)
  • C.2 Dispersion equations for refractive index (p. 356)
  • C.3 Absorption coefficients of selected materials calculated by OPTIMATR (p. 362)
  • C.4 Change of refractive index with isotropic pressure (p. 365)
  • Appendix D Definitions from Radiometry (p. 371)
  • Appendix E Elastic Constants (p. 374)
  • Appendix F The Weibull Distribution (p. 382)
  • F.1 Weibull probability distribution (p. 382)
  • F.2 Effective volume or area (p. 384)
  • F.3 Weibull equations for different kinds of test specimens (p. 384)
  • F.4 Relative strengths of different kinds of test specimens (p. 387)
  • F.5 Weibull scaling by area instead of volume (p. 389)
  • Appendix G Thermal Properties of Selected Materials (p. 391)
  • Index (p. 403)

Author notes provided by Syndetics

Daniel C. Harris is a Senior Scientist in the Chemistry and Materials Division of the Research Department at the Naval Air Warfare Center at China Lake, California

Powered by Koha